
CHR.js: A CHR Implementation in JavaScript

Falco Nogatz1, Thom Frühwirth2, and Dietmar Seipel1

1 University of Würzburg, Department of Computer Science
Am Hubland, D – 97074 Würzburg, Germany

{falco.nogatz,dietmar.seipel}@uni-wuerzburg.de
2 Ulm University, Institute of Software Engineering and Programming Languages

D – 89069 Ulm, Germany
thom.fruehwirth@uni-ulm.de

Abstract

Constraint Handling Rules (CHR) is usually compiled to logic programming languages.
While there are implementations for imperative programming languages such as C and
Java, its most popular host language remains Prolog. In this paper, we present Chr.js,
a CHR system implemented in JavaScript, that is suitable for both the server-side and
interactive client-side web applications. Chr.js provides (i) an interpreter, which is based
on the asynchronous execution model of JavaScript, and (ii) an ahead-of-time compiler,
resulting in synchronous constraint solvers with better performances. Because of the great
popularity of JavaScript, Chr.js is the first CHR system that runs on almost all and
even mobile devices, without the need for an additional runtime environment. As an
example application we present the Chr.js Playground, an offline-capable web-interface
which allows the interactive exploration of CHRs in every modern browser.

1 Introduction

Constraint Handling Rules (CHR) [7] has its origins in the field of constraint logic programming.
However, today’s applications cover many different areas, ranging from traditional reasoning and
time tabling problems to data mining, compiler construction, and computational linguistics [8].
Although it is usually used together with a hosting language, CHR has been evolved to a
general-purpose programming language since its creation in the early 1990s. One reason for this
development has been the implementation of CHR systems in different programming languages.
Among others, there are CHR systems for most popular languages, including Java [22, 1, 18]
and C [23]. While these implementations in imperative programming languages are typically
faster, CHR’s most popular host language remains Prolog. As a result, CHR is more common in
the research community than for commercial applications that could benefit from its forward-
chaining rewrite rules.

As today’s applications increasingly become interactive, one of the main challenges is the
handling of state and its mutations. The handling and coordination of multiple events (e.g.,
mouse clicks, sensor data) could be described using CHRs, modelling the program’s state as
the actual content of the constraint store. From this point of view, the combination of CHR
with the increasingly interactive environment of web applications seems promising. Besides
this, the programming language and field of constraint logic programming could benefit from
a web-based implementation that can be easily run on most of the current devices, without
the need for an additional installation step. JavaScript seems like an intended target to be
a CHR host language: measured against dissemination and popularity, it is currently one of
the most popular programming languages. Douglas Crockford, who developed the JavaScript
Object Notation (JSON), once stated that every personal computer in the world had at least
one JavaScript interpreter installed on it and in active use [3].

CHR in JavaScript F. Nogatz et al.

JavaScript is already a popular target language for compilation, too. There are currently
more than 300 languages that compile to JavaScript.1 By porting CHR to JavaScript, we
can benefit from this broad distribution of runtime environments. For the implementation of
Chr.js, we define some design goals:

Resemblance to existing CHR systems. The Chr.js syntax should feel natural for users
with experience in other CHR systems.

Syntax based on JavaScript. The definition of CHRs should conform to design patterns in
JavaScript. We strive for a natural integration of both languages.

Support for different runtime environments. Chr.js should be portable across multiple
runtime environments, including all modern web browsers and the server-side JavaScript
framework node.js [2].

Extensible tracing options. By being executable on the web, CHR can be opened to the
public. We want to improve the understanding of CHR programs by providing various
tracing options.

Efficiency. The CHR system should be efficient. But unlike most of the other hosting lan-
guages of existing CHR implementations, JavaScript is an interpreted programming lan-
guage and compiled just-in-time (JIT), so it might not be possible to compete with C or
Java implementations.

Overview. The remainder of the paper is organised as follows. In Section 2, we shortly
introduce the syntax and semantics of CHR. As a motivational example and to emphasise
the usefulness of the Chr.js system, we present the web-based CHR tracer called Chr.js
Playground in Section 3. In Section 4, existing approaches on the compilation of CHR into
imperative programming languages are introduced. We define the integration of CHR with the
JavaScript language in Section 5. The compilation scheme for asynchronous CHRs, which is
used by the interpreter of Chr.js, is presented in Section 6. Next, Section 7 introduces the
compilation scheme for synchronous CHRs, used by the AOT compiler. The performance of
Chr.js is compared to several other CHR systems in Section 8. Finally, we conclude with a
summary and discussion of future work in Section 9.

2 Constraint Handling Rules

In this section, the syntax and semantics of CHR are shortly summarised. For a more detailed
introduction, we refer to [7].

Constraints are expressions of the form c(t1, . . . , tn) with n ≥ 0, where c is an n-ary con-
straint symbol and t1, . . . , tn are terms of the host language. In addition to these CHR con-
straints, there are built-in constraints, which are data structures of usually the same form but
which defined in the host language. E.g., in Prolog these are predicates – either defined by the
user or built-in –, and functions in JavaScript.

All CHR constraints that are known to be true are placed in a multi-set which is called the
constraint store. By defining rules, it is possible to manipulate its contents. There are three
types of rewrite rules which are applied until a final state is reached:

1List of languages that compile to JS, https://github.com/jashkenas/coffeescript/wiki/

list-of-languages-that-compile-to-js

2

https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js

CHR in JavaScript F. Nogatz et al.

gcd1 @ gcd(0) ⇔ true
gcd2 @ gcd(N) \ gcd(M) ⇔ 0 < N, N ≤M | gcd(M −N)

Figure 1: CHR rules to calculate the greatest common divisor given as gcd/1 constraints.

– the propagation rule is of the form K1, . . . ,Kn ⇒ G1, . . . , Gm | B1, . . . , Bl,

– the simplification rule is of the form R1, . . . , Rn ⇔ G1, . . . , Gm | B1, . . . , Bl,

– the simpagation rule is a combination of both and of the form K1, . . . ,Kk \ Rk+1, . . . , Rn ⇔
G1, . . . , Gm | B1, . . . , Bl,

with Ki and Ri CHR constraints, Gi built-in constraints, and Bi built-in or CHR constraints.
The CHR constraints denoted by Ki are kept in the constraint store, the Ri are removed, and
the Bi are added. A rule is only applied if there are constraints in the constraint store which
match with Ki resp. Ri, and if the guard specified by the built-in constraints Gi is satisfied. A
rule is optionally preceded by Name @, where Name is its identifier.

Unlike its most popular host language Prolog, CHR is a committed-choice language and
consists of multi-headed and guarded rules. There are multiple operational semantics for CHR.
Chr.js is based on the refined operational semantics ωr as defined in [4], like most current
CHR implementations. Most importantly, our implementation fixes the execution order of the
given rules, while there remains non-determinism in the search of partner constraints.

Running Example. Figure 1 shows the classical gcd/1 handler. Its two rules with the
names gcd1 and gcd2 define a constraint solver that calculates the greatest common divisor
(GCD) of all positive integers specified as gcd/1 constraints. Given the two constraints gcd(36)
and gcd(8), the rule gcd2 is applied, replacing gcd(36) by gcd(28). After five more steps, the
constraint gcd(0) is created and removed by rule gcd1 . The only remaining constraint gcd(4)
is the result.

3 CHR.js Playground: Web-based Tracing for CHR

In our experience, there are two typical scenarios when working with a CHR system, both with
different requirements: either one wants to simply (i) use the constraint solving mechanism, then
with its best performance; or the user’s aim is (ii) to interact with the rules and the constraint
store. The latter is often the case when developing and tracing CHRs, or for educational
purposes.

As an example application, our contribution contains an interactive web-based tracer for
CHR. Figure 2 presents a screenshot of the created web application. It is inspired by collabo-
rative code sharing platforms like JSFiddle2 and SWISH3 [21]. On the left-hand side the code
editor is used to edit CHRs and to define built-in constraints in native JavaScript. In the
right panel, queries can be specified, there is an optional tracer with step-by-step execution,
and the current constraint store is visualised. A public, hosted instance is available online at
http://chrjs.net/playground.

2JSFiddle, https://jsfiddle.net/
3SWISH, https://swish.swi-prolog.org/

3

http://chrjs.net/playground
https://jsfiddle.net/
https://swish.swi-prolog.org/

CHR in JavaScript F. Nogatz et al.

Figure 2: Screenshot of the Chr.js Playground at chrjs.net run in the Google Chrome browser
with tracing enabled.

Although it is a web application, the Chr.js Playground can be used standalone offline,
because unlike SWISH no remote Prolog server is needed to run the specified queries. The
stated CHRs are compiled on the fly. The Chr.js Playground provides a persistent mode so
it is possible to define CHRs that work on an already existing constraint store. To the best of
our knowledge, this is the first CHR implementation that runs on mobile devices.

4 Related Work

Several approaches to compile CHR have already appeared in the literature. Since it was created
as a language extension for Prolog in the first place [11, 12, 13], Prolog is the target language
predominantly discussed. The implicit execution stack of Prolog maps very well to the ordered
execution stack of the refined operational semantics ωr: if a new constraint is added, all of its

4

chrjs.net

CHR in JavaScript F. Nogatz et al.

occurrences are handled as a conjunction of Prolog goals and are therefore executed before any
other added constraint.

For imperative target languages, there are two major CHR systems:
(i) K.U.Leuven JCHR [18], a CHR system for Java, and (ii) CCHR [23], a CHR system for
C, which is currently the fastest implementation of CHR. Both implementations are discussed
in [19]. A historical overview of CHR implementations can be found in [17].

Basic Compilation Scheme for Imperative Languages and Optimisations. The com-
pilation scheme of CHR for logic programming languages as presented in [13] can be adopted to
a procedural computation style by replacing Prolog predicates with methods or function calls.
The resulting basic compilation scheme for imperative programming languages is presented
in [19] and independent from the actual target language.

Although this general scheme is conform to the refined operational semantics ωr, it is fairly
inefficient. Multiple optimisations have been proposed in the past with [19] providing an ex-
haustive overview. These optimisations have been categorised into general ones (e.g., indexing,
avoiding loop invariants, and guard simplifications) and optimisations in respect of recursions.
Since JavaScript does not – unlike, for example, C and some implementations of the Java
Virtual Machine – support tail call optimisations (TCO), they are of special interest for the
implementation of Chr.js.4 Most non-trivial CHR programs contain recursions, and the dis-
cussed basic compilation scheme adds even more layers of recursive function calls due to its use
of helper functions for each occurrence handler. On the other hand, the maximum call stack
size is very limited in all major JavaScript systems, ranging from about 10k to 50k. Van Weert
et al. present an adapted compilation scheme using a technique called trampoline [10] to avoid
stack overflows for CHRs with tail calls. For the Chr.js compiler we make use of the explicit
stack, where the host language’s stack is replaced by a self-maintained continuation queue on
the host’s heap.

5 Seamless Integration of CHR into JavaScript

Following our design goals, Chr.js should be easy to use and adapt for both JavaScript and
CHR experts. However, JavaScript has a different syntax than CHR and the well-known hosting
language Prolog. In this section, we present how CHR can be embedded into JavaScript code
and used together with JavaScript’s synchronous and asynchronous functions. Even though
this is discussed in particular for CHR, this section is useful for any reader interested in the
seamless integration of a rule-based language into JavaScript.

5.1 Embed CHR in JavaScript using Tagged Template Strings

The syntax of rule definitions is very similar to most existing CHR systems. Simple rules can
be specified the same way as in CHR for Prolog (i.e. ⇒ is encoded as ==>, and ⇔ as <=>), as
long as one uses the JavaScript equivalents of Prolog operators.5 Moreover, different rules are
either separated by a newline or a semicolon instead of a period. Unlike K.U.Leuven JCHR,
CCHR and CHR systems for Prolog, CHR constraints do not need to be declared in advance.

4The JavaScript language is standardised as ECMAScript [5]. The most recent version of the ECMAScript
specification is the sixth version, often referred to as ES6 or ES2015 or by its codename Harmony. Although
it defines TCO, it has not yet been implemented by the major browsers.

5For example the equality check in JavaScript is performed using == or === (type-safe), instead of the often
used unification = in Prolog.

5

CHR in JavaScript F. Nogatz et al.

var chr = new CHR()

chr` gcd1 @ gcd(0) <=> true

gcd2 @ gcd(N) \\ gcd(M) <=> 0 < N, N <= M | gcd(M-N)`

Figure 3: Chr.js rules to calculate the greatest common divisor.

Chr.js goes the other way round and uses a special syntax for the built-ins in the guard and
body which must be enclosed by a dollar sign followed by curly brackets ${. . . }. As of now,
there is no support for logical variables.

JavaScript and Prolog have a thing common: both lack easy support for multiline strings.
With SWI-Prolog since version 6.3.17 this has been addressed using quasi-quotations [20]. They
provide a special syntax to directly embed text that spawns multiple lines, which makes them
suitable to embed external domain–specific languages (DSL) into Prolog source code without
any modification [16]. A similar technique has been recently added to JavaScript. So called
tagged template strings allow to embed a DSL directly into JavaScript using the following
syntax:

tag`text with ${ embedded_expr } even across multiple lines`

where tag is a user-defined function (the template handler) and expressions can be embedded
using the ${. . . } notation. Figure 3 presents the gcd/1 handler as introduced in Section 2 in
Chr.js syntax. Since in JavaScript the backslash \ is an escape character in strings, it has to
be escaped by a second backslash.

The Chr.js constructor CHR() creates the template handler chr, which can be used to
embed the CHRs in JavaScript as a tagged template string. The template handler generates an
abstract syntax tree (AST) for the given CHR program. In order to parse the rules, we have
formalised their structure using a Parsing Expression Grammar (PEG) [6] and its JavaScript
parser generator PEG.js6. PEG’s syntax is similar to Definite Clause Grammars (DCG). Since
the template string contains JavaScript fragments (e.g., the guard 0 < N), we extended the
JavaScript meta-grammar shipped with PEG.js to be able to parse CHR rules, too. A more
detailed presentation of these PEG rules, the rule grammar, and the generation of the AST is
given in [15, Sec. 4.3].

5.2 Synchronous and Asynchronous Execution

For each constraint c/n in the rule head a caller function chr.c(arg1, . . . , argn) is created by
Chr.js. This way, the calculation of the GCD of the numbers 36 and 8 can be invoked by
calling chr.gcd(36) and chr.gcd(8). Because JavaScript has no static typing, the same caller
function chr.c is used for all n, i.e. gcd/2 is invoked by simply specifying two arguments.

In most traditional imperative programming languages there is a strict stack-based execution
cycle. To avoid blocking functions, concurrency models based on multiple threads have been
established. Since JavaScript is single-threaded, this has been solved using the event loop. For
functions taking long to execute it is possible to define a callback which is invoked once the
function has been finished. These functions are called asynchronous.

The GCD of our running example can be calculated without any blocking function. However,
if the application of a rule depends, e.g., on the result of a possibly long-running database

6PEG.js, https://pegjs.org/

6

https://pegjs.org/

CHR in JavaScript F. Nogatz et al.

query, we can make use of Chr.js’ support for asynchronous functions. The caller function
chr.c(arg1, . . . , argn) provides a method .then(callback) to specify the callback function
which is used once the constraint solving process has been completely finished. It is realised
using the increasingly more popular approach of using Promises [9]:

chr.gcd(36).then(function () { // call when finished handling gcd(36)

chr.gcd(8).then(function () { // call when finished handling gcd(8)

console.log(chr.Store.toString()) // prints constraint store

}) }) // output: gcd(4)

In JavaScript, a Promise represents the eventual completion or failure of an asynchronous
operation. Once it is created, a callback function cb can be attached via .then(cb). It is
called as soon as the asynchronous function has been finished and takes the computed value as
its first argument.

If there is only a single asynchronous function in one of the rule’s guard or body, the complete
Chr.js constraint solver becomes asynchronous. Due to JavaScript’s execution model using the
event loop, there is simply no way to wrap an asynchronous function inside another function
and make it synchronous, that means blocking, again. So we have to categorise two kinds of
CHR programs that we want to use with Chr.js: those which contain asynchronous functions,
and those which do not. This is reflected also in our two compilation schemes: Chr.js provides
an interpreter, which uses and supports asynchronous functions. Its compilation scheme is
presented in Section 6. On the other hand we provide an AOT compiler which only supports
synchronous functions. Both have their justifications: the asynchronous version is flexible and
avoids stack overflows by design, because only a single stack frame is generated per message in
the event loop. On the other hand the synchronous version is faster and more natural for users
already familiar with CHR.7

6 An Asynchronous CHR Interpreter using Promises

While an asynchronous function can not be brought back into a synchronous form, the other
way round is always possible. JavaScript’s Promise.resolve(v) creates a Promise object that
always immediately resolves to the specified value v:

var p = Promise.resolve([1,2,3]) // creates a new Promise p

p.then(function (ret) { // p is "then-able" now like chr.gcd(8)

console.log(ret) }) // output: [1,2,3]

We have modified the basic compilation scheme of [19, Sec. 5.2] to use Promises, i.e. to use
asynchronous callbacks specified via .then(). The constraints in the rule body and guard must
be called asynchronously. The modified loop variant in the compilation scheme for a single oc-
currence
occurrence ci ji(. . .) is presented in Figure 4.

The functions resolve() resp. s() successfully conclude the current Promise, similar to a
return statement in synchronous function calls. With the functions reject() resp. j() the
Promise gets rejected, similar to a throw statement in synchronous function calls.

Promise.all(arrayOfPromises) executes a given array of Promises in parallel. Note that
due to CHR’s refined operational semantics ωr this is only allowed for the guards. The body
constraints have to be handled sequentially instead. In [15, Sec. 4.5], we began to examine the

7A more detailed discussion on using synchronous or asynchronous functions is given in [15, Sec. 3.4].

7

CHR in JavaScript F. Nogatz et al.

if (!Store.allAlive(constraintIds)) // = nested check of still alive ids [l. 8]
return resolve()

if (!Store.allDifferent(constraintIds)) // = pairwise comparison [ll. 9-11]
return resolve()

if (History.has(ruleId, constraintIds)) // = notInHistory() [l. 13]
return resolve()

var guards = [// = g_1 and ... and g_ng [l. 12]
new Promise(function(s, j) { return g_1 ? s() : j() }),
...
new Promise(function(s, j) { return g_ng ? s() : j() })

]
Promise.all(guards) // prove all guards

.then(function () { // all guards satisfied
History.add(ruleId, constraintIds) // = addToHistory() [l. 14]
Store.kill(constraintIds[r]) // = kill() [ll. 15-17]
...
Store.kill(constraintIds[h])
Promise.resolve()

.then(function() { return b_1() }) // invoke Promise for body 1 [ll. 18-20]

. ...

.then(function() { return b_nb() }) // invoke Promise for body nb

.then(function() { resolve() })

.catch(function() { reject() })
}).catch(function() { reject() }) // could not be fulfilled

Figure 4: The modified loop variant for the compilation of a single occurrence. The bracketed
line numbers refer to the original compilation scheme of [19].

parallel execution of constraints, which remains an interesting field for future improvements
and research.

Support for Event Listeners and Breakpoints. Similar to the CHR reference implemen-
tation by Christian Holzbaur [13], Chr.js provides a runtime environment which is reused by
all instances. For example, the global constraint store referenced in Figure 4 as Store can
be accessed as part of the created chr object using chr.Store. During program execution it
emits events for the addition and removal of a constraint. As usual in JavaScript, they can be
received by adding event listeners as follows:

chr.Store.on('add', function (c) { /* added constraint c */ })

chr.Store.on('remove', function (c) { /* removed constraint c */ })

We use traditional callbacks instead of Promises for the event listeners, since Promises can be
executed only once, whereas it is a reasonable use-case to fetch the removal of several constraints
with multiple event listeners.

Similar to the constraint store, the defined CHR rules can be accessed and modified using
chr.Rules. It holds an object for every defined CHR rule, for instance chr.Rules[’gcd1’]

and chr.Rules[’gcd2’]. They have a special Breakpoints property which allows the binding
of a Promise that will be called once the rule is tried to be applied. Unlike for event listeners,
the further application of the Chr.js program is paused until this Promise is resolved.

7 Ahead-of-time Compilation with an Explicit Stack

Having to wait for the event loop for every single Promise, the compilation scheme presented in
Section 6 does not result in fast constraint solvers. However, without the use of asynchronous
functions, the constraint solver easily ends in a stack overflow because of the heavy use of

8

CHR in JavaScript F. Nogatz et al.

recursion in the basic compilation scheme. This can be avoided using an optimising technique
which is introduced in [19] as explicit stack. Instead of directly calling, e.g., the body constraints
of a rule, an appropriate continuation is returned by the occurrence handler and pushed to the
global list stack. The continuations are then handled by a global loop, similar to the event
loop:

function trampoline() {

while (constraint = stack.pop()) // pull first element

constraint.continue() } // might push new continuations to the stack

We push the constraints that have been added in the rule’s body to stack and add the continu-
ation as the property cont of this particular constraint, so the call of constraint.continue()
simply invokes it. Working with continuations is common in JavaScript, because functions are
first-class citizens.

The initial caller function of a constraint, for instance chr.gcd(), generates the constraint
object and initialises the constraint.cont property with the first occurrence handler gcd 1 0:

function gcd() {

var args = Array.prototype.slice.call(arguments)

var arity = arguments.length, functor = "gcd/" + arity

var constraint = new Constraint("gcd", arity, args);

constraint.cont = [__gcd_1_0, 0]; stack.push(constraint)

trampoline() }

The occurrence functions are of the form ci ai ji, with ci the current constraint name, ai
its arity and ji an increasing number which identifies the occurrence. At the end, we add a
generic handler with the occurrence number (ji + 1), which simply takes the constraint c from
the stack and adds it to the constraint store:

function __gcd_1_3(c,n) { c.cont = null; chr.Store.add(c) }

If, for instance, a constraint c/0 occurs only in a rule’s body but in no head, there is no
rule that can be applied when c is added. So the only occurrence handler is the generic c 0 0,
which adds c to the constraint store.

Instead of directly using the caller functions of the body constraints, we now add these
constraints to the stack and assign their first occurrence handler as their first continuation.
Therefore, a typical generated code fragment looks like this:

if (condition)

c.cont = [nextOccurrenceHandler, 0]; stack.push(c); return

For instance, this is used with the rule’s guard as the condition: if they are not satisfied, the
next occurrence handler is called. As seen in the previous code fragments, we not only specify
the continuation but also a number n which is initialised with 0. It is used to effectively iterate
through all possible combinations of partner constraints in rules where the active constraint
is kept. Instead of using a (possibly nested) loop, we can simply add the current occurrence
handler as the next continuation but with an incremented n, so the next combination of partner
constraints is used.

9

CHR in JavaScript F. Nogatz et al.

8 Experimental Evaluation

Chr.js has been developed in a test-driven approach. Currently its compliance to the refined
operational semantics ωr is ensured by more than 420 functional tests. The correctness of
Chr.js is discussed in [15, Sec. 4.2.2]. Our implementation closely resembles the basic compi-
lation scheme proposed in [19], whose completeness and correctness is shown in the same place.
The functional tests has been used in a continuous integration environment with Travis CI 8.

8.1 Used Benchmarks and Systems

In order to compare our implementation to existing CHR systems, we used four benchmarks
based on [23] and the CCHR implementation9:

– gcd calculates the greatest common divisor of 5 and 1000×N using the subtraction-based
Euclidean algorithm as presented in our running example. It is a linear program involving
at most two constraints.

– fib calculates the N ’th Fibonacci number by bottom-up evaluation. This involves at most
three constraints: an upto/1 and the last two fib/2.

– primes generates all prime numbers upto N using the sieve of Eratosthenes.

– ram is a RAM simulator which counts down from N .

The original CCHR benchmarks specify two more problems, tak and leq. We do not make use
of them, because both require logical variables.

Basically, our benchmark suite executes a given command as often as possible within a 10
seconds time slot. It measures the number of iterations as well as the average execution time.
We do not consider the used memory.10

All benchmarks are run on an Intel Core i7 9xx Dual Core CPU with 8 GB of RAM,
using Ubuntu Server 16.04.3 64bit (Linux Kernel 4.4.0) with low load. We compare with three
other CHR implementations: K.U.Leuven JCHR (v1.5.1) in Java (OpenJDK v1.8.0), CCHR
(no version number provided, GCC v5.4.0), and K.U.Leuven CHR in SWI-Prolog (v7.6.4). For
reference we provide a native JavaScript solution run with node.js (v9.5.0). Chr.js has been
used in v3.3.1 and with node.js (v9.5.0).

The asynchronous Chr.js interpreter as presented in Section 6 makes great use of JavaScript’s
Promises. In [15, Sec. 6.2], we have shown that this technique is not even competitive to equiv-
alent synchronous, iterative implementations. For every Promise, the JavaScript systems in all
of today’s browsers add a latency of four milliseconds. We therefore only use AOT-compiled
Chr.js programs in the benchmarks.11

8.2 Benchmark Results

Figure 5 shows the results of the benchmarks. Table 1 lists the geometric averages to complete
the calculations. The averages for JavaScript have been set to 1 and those of the other systems
have been scaled relatively. For the average calculation we consider only problem sizes that
(i) have been successfully finished by all five systems within 10 seconds, and (ii) the overall
completion time for every system is not lower than 0.1 milliseconds.

8Travis Continuous Integration service, https://travis-ci.org/
9Copy available at https://svn.ulyssis.org/repos/sipa/cchr/

10Benchmarks available at https://github.com/fnogatz/CHR-Benchmarks
11Chr.js provides a command line utility to pre-compile CHR programs: chrjs --optimized program.in

10

https://travis-ci.org/
https://svn.ulyssis.org/repos/sipa/cchr/
https://github.com/fnogatz/CHR-Benchmarks

CHR in JavaScript F. Nogatz et al.

Table 1: Relative Geometric Averages of Benchmark Results

Program SWI-Prolog K.U.Leuven JCHR Chr.js JavaScript CCHR
gcd 280 6.8 53 a1.0 .08
fib 3.3 39 b9.9 c1.0 .05
primes 16 18 19 1.0 .03

aFor very large N × 1000, the problem exceeds the largest safe integer number in JavaScript,
Number.MAX SAFE INTEGER. The calculation therefore needs more iterations due to the imprecision of the in-
put value.

bFor N = 1470 the N ’th Fibonacci number exceeds the largest possible number in JavaScript,
Number.MAX VALUE. From there on the results are simply stated as Infinity. The Chr.js program finishes
but the addition Infinity + Infinity is faster than the additions before, resulting in a faster overall execution.

cTo avoid exceeding Number.MAX VALUE we reset the numerical sequence every 1470th loop pass. For N ≈
2 · 109 the JavaScript implementation takes about 10 seconds.

All benchmarks have in common that CCHR is the fastest CHR implementation. Chr.js
will not be able to compete with CCHR, since even the native JavaScript implementation of
the problems is one order of magnitude slower than the C constraint solver.

The gcd and fib problems are similar in kind: both are actively working on only two con-
straints and one important CHR rule. By the use of a simpagation rule in both cases one of the
constraints is removed and another gets added. But while for the fib problem it is guaranteed
that always the older constraint is removed, this is not necessarily for gcd. In fact, the problem
to solve gcd(5), gcd(1000*N) always removes the just now created gcd/1 constraint.

11

C
H

R
in

J
a
v
a
S

crip
t

F
.

N
o
g
a
tz

et
a
l.

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000 10000 100000 1x106 1x107

tim
e

problem size

Benchmark gcd

swi
jchr

chrjs
js

cchr 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000 10000 100000 1x106 1x107

tim
e

problem size

Benchmark fib

swi
jchr

chrjs
js

cchr

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000 10000 100000 1x106 1x107

tim
e

problem size

Benchmark primes

js
swi

chrjs
jchr
cchr

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000 10000 100000 1x106 1x107

tim
e

problem size

Benchmark ram

swi
jchr

chrjs
js

cchr

Figure 5: Results for the benchmarks gcd, fib, primes, and ram. Further annotations are given in Table 1. Note that all benchmarks
have in common that the native JavaScript implementation is not linear as expected. Because the start-up time for node.js scripts is
about 10ms, the linear dependence can be seen only for big enough problem sizes.

12

CHR in JavaScript F. Nogatz et al.

In the Chr.js AOT compiler we already have implemented the late storage optimisation as
suggested in [19, Sec. 5.3]. So, the problem to solve gcd(5), gcd(1000*N) stores only a single
constraint at all, since a constraint gcd(P) immediately invokes the continuation for gcd(P-5),
and so on.

In the primes benchmark, our implementation is at par with the CHR systems in SWI-Prolog
and JCHR, but still two orders of magnitude slower than the native JavaScript implementation.
The primes problem highly depends on an efficient way to find partner constraints. To the best
of our knowledge, there is no JavaScript standard implementation of an efficient in-memory
index that works with node.js and all major browsers. In the worst case, a single lookup for
partner constraints in Chr.js has to loop through all existing constraints.

The results in Figure 5 and Table 1 suggest that the CHR systems in SWI-Prolog, JCHR
and our contribution Chr.js have implemented various optimisations, resulting in fairly similar
performances. There is no clear ranking of all the four systems – except for CCHR, whose claim
to be the fastest CHR implementation could be verified.

9 Conclusion

In this work, we have presented Chr.js, the first implementation of CHR in JavaScript. It is
published at https://github.com/fnogatz/CHR.js (MIT License) and supports synchronous
and asynchronous JavaScript functions in the rules’ guards and bodies. As an example applica-
tion, we have presented the Chr.js Playground. This offline-capable web application uses event
listeners and breakpoints, so that rules and the constraint store can be interactively edited and
the execution of the CHR program can be traced.

To achieve CHR programs with reasonable performances, we have presented the compilation
scheme for CHR to synchronous JavaScript. It makes use of continuation-passing to avoid
recursions. Although the generated programs are at least one order of magnitude slower than
their native JavaScript counterparts, there are several promising open optimisation ideas.

The presented approach of embedding CHR into JavaScript using tagged template strings
might be useful for the integration of other rule-based DSLs, too. In particular, we would like
to adapt the existing JavaScript interface of SWI-Prolog’s Pengines [14] library, which allows
the definition of remote procedure calls from web applications to Prolog engines, to also use a
similar mechanism.

References

[1] Slim Abdennadher, Ekkerhard Krämer, Matthias Saft, and Matthias Schmauss. JaCK: A Java
Constraint Kit. Electronic Notes in Theoretical Computer Science, 64:1 – 17, 2002.

[2] Mike Cantelon, Marc Harter, TJ Holowaychuk, and Nathan Rajlich. Node.js in Action. Manning
Publications, 2017.

[3] Douglas Crockford. JavaScript: The world’s most misunderstood programming language. Douglas
Crockford’s Javascript, 2001.

[4] Gregory J Duck, Peter J Stuckey, Maria Garcia De La Banda, and Christian Holzbaur. The
refined operational semantics of Constraint Handling Rules. In Logic Programming, pages 90–104.
Springer, 2004.

[5] ECMAScript ECMA-Kommittee. A general purpose, cross-platform programming langugage,
Standard ECMA-262, 1997.

[6] Bryan Ford. Parsing expression grammars: a recognition-based syntactic foundation. In ACM
SIGPLAN Notices, volume 39, pages 111–122. ACM, 2004.

13

https://github.com/fnogatz/CHR.js

CHR in JavaScript F. Nogatz et al.

[7] Thom Frühwirth. Constraint Handling Rules. Cambridge University Press, 2009.

[8] Thom Frühwirth. Constraint Handling Rules - What Else?, pages 13–34. Springer International
Publishing, Cham, 2015.

[9] Keheliya Gallaba, Ali Mesbah, and Ivan Beschastnikh. Don’t call us, we’ll call you: Characteriz-
ing callbacks in JavaScript. In Empirical Software Engineering and Measurement (ESEM), 2015
ACM/IEEE International Symposium on, pages 1–10. IEEE, 2015.

[10] Steven E Ganz, Daniel P Friedman, and Mitchell Wand. Trampolined style. In ACM SIGPLAN
Notices, volume 34, pages 18–27. ACM, 1999.

[11] Christian Holzbaur and Thom Frühwirth. Compiling constraint handling rules. In ERCIM/COM-
PULOG Workshop on Constraints, CWI, Amsterdam, 1998.

[12] Christian Holzbaur and Thom Frühwirth. Compiling constraint handling rules into Prolog with
attributed variables. In Principles and Practice of Declarative Programming, pages 117–133.
Springer, 1999.

[13] Christian Holzbaur and Thom Frühwirth. A Prolog Constraint Handling Rules compiler and
runtime system. Applied Artificial Intelligence, 14(4):369–388, 2000.

[14] Torbjörn Lager and Jan Wielemaker. Pengines: Web logic programming made easy. Theory and
Practice of Logic Programming, 14(4-5):539–552, 2014.

[15] Falco Nogatz. CHR.js: Compiling Constraint Handling Rules to JavaScript. Master Thesis, Ulm
University, Germany, 2015.

[16] Falco Nogatz and Dietmar Seipel. Implementing GraphQL as a Query Language for Deductive
Databases in SWI–Prolog Using DCGs, Quasi Quotations, and Dicts. In Proc. 30th Workshop on
Logic Programming (WLP 2016), 2016.

[17] Tom Schrijvers. Analyses, optimizations and extensions of Constraint Handling Rules. PhD thesis,
K.U.Leuven, Belgium, June 2005.

[18] Peter Van Weert, Tom Schrijvers, and Bart Demoen. K.U.Leuven JCHR: a user-friendly, flexible
and efficient CHR system for Java. pages 47–62.

[19] Peter Van Weert, Pieter Wuille, Tom Schrijvers, and Bart Demoen. CHR for imperative host
languages. In Constraint Handling Rules, pages 161–212. Springer, 2008.

[20] Jan Wielemaker and Michael Hendricks. Why It’s Nice to be Quoted: Quasiquoting for Prolog.
In Proc. 23rd Workshop on Logic–based Methods in Programming Environments (WLPE), 2013.

[21] Jan Wielemaker, Torbjörn Lager, and Fabrizio Riguzzi. SWISH: SWI-Prolog for sharing. In Proc.
of the International Workshop on User-Oriented Logic Programming (IULP 2015), 2015.

[22] Armin Wolf. Adaptive constraint handling with CHR in Java. In International Conference on
Principles and Practice of Constraint Programming, pages 256–270. Springer, 2001.

[23] Pieter Wuille, Tom Schrijvers, and Bart Demoen. CCHR: the fastest CHR Implementation, in C.
In Proc. 4th Workshop on Constraint Handling Rules (CHR07), pages 123–137, 2007.

14

	Introduction
	Constraint Handling Rules
	CHR.js Playground: Web-based Tracing for CHR
	Related Work
	Seamless Integration of CHR into JavaScript
	Embed CHR in JavaScript using Tagged Template Strings
	Synchronous and Asynchronous Execution

	An Asynchronous CHR Interpreter using Promises
	Ahead-of-time Compilation with an Explicit Stack
	Experimental Evaluation
	Used Benchmarks and Systems
	Benchmark Results

	Conclusion

