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Abstract. Constraint Handling Rules (CHR) is a concurrent committed-
choice constraint programming language, developed in the 1990s for the
implementation of constraint solvers. It is traditionally an extension to
other programming languages – especially constraint logic programming
languages – but has been used increasingly as a general-purpose program-
ming language in the recent past. With CHR, one can specify, implement
and analyse algorithms in a concise and compact manner by executable
inference rules.

1 Introduction

Constraint Handling Rules (CHR) [8, 13] is a concurrent committed-choice con-
straint logic programming language consisting of guarded rules that transform
multi-sets of constraints (atomic formulae) until no more change happens.

In CHR, one distinguishes two main kinds of rules: Simplification rules re-
place constraints by simpler constraints while preserving logical equivalence, e.g.
X≥Y ∧ Y≥X ⇔ X=Y. Propagation rules add new constraints, which are logi-
cally redundant, but may cause further simplification, e.g. X≥Y∧Y≥Z ⇒ X≥Z.

The combination of propagation and multi-set transformation of logical for-
mulae in a rule-based language that is concurrent, guarded and constraint-based
make CHR a rather unique and powerful declarative programming language.
For example, any terminating and confluent CHR program will automatically
implement a concurrent any-time (approximation) and on-line (incremental) al-
gorithm. CHR tries to bridge the gap between theory and practice, between
logical specification and executable program by abstraction and the concepts of
computational logic. CHR supports rapid prototyping by giving the programmer
efficiently executable specifications. Through the notion of constraint, CHR does
not distinghuish between data and computation, it therefore naturally supports
active data and suspensions/continuations in a high-level way. Multi-headed
rules provide implicit iteration instead of cumbersome looping constructs.
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CHR does not necessarily impose itself as a new programming language, but
as a language extension that blends in with the syntax of its host language, be it
Prolog, Lisp, Haskell or Java [23]. CHR is also available as WebCHR for online
experimentation with more than 40 constraint solvers. The CHR webpages also
link to 500+ papers mentioning CHR.

CHR was motivated by the inference rules that are traditionally used in
computer science to define logical relationships and fixpoint computation in the
most abstract way. CHR has many roots and combines their attractive features
in a novel way. First of all, Prolog, constraint logic programming and concurrent
committed-choice logic programming are direct ancestors of CHR. More con-
cretely, it was influenced by the demons and forward rules of the CHIP language.
It gratefully adapts concepts from term rewriting systems, but goes beyond them
by providing propagation rules, logical variables, constraints and more. Like Au-
tomated Theorem Proving, it uses formulae to derive new information, but only
in a restricted syntax and directional way that makes the difference between
the art of proof search and an efficient programming language. Still, extend-
ing CHR with disjunction and existential quantifiers in CHR∨ makes it quite
suitable for theorem proving tasks. Other influences were the chemical abstract
machine, and, of course, production rule systems in general, but also integrity
constraints found in relational databases. We also would like to mention rewrit-
ing logic here, that was independently developed around the same time and that
shares some motivations and ideas with CHR. Another related independent de-
velopment were the event-condition-action rules that arose deductive database
research.

If asked what distinguishes CHR from all these programming languages and
computational systems, the quick answer is “propagation rules”, then “multi-
head/multi-set transformation”, “constraints”, reliance on logic, be it classical
or not, and then one may add all the other characteristics of CHR.

One of the attractive features of the Constraint Handling Rules (CHR) pro-
gramming language is its declarative semantics where rules are read as formulae
in first-order predicate logic. The clean semantics of CHR facilitates non-trivial
program analysis [25] and transformation. In particular, confluence analysis is
an issue in CHR, since rule application is committed-choice, it is never undone.
Confluence aks the question if a program produces the same result no matter
which of the applicable rules are applied in which order. There is a decidable,
sufficient and necessary criterion for confluence [5] that returns the problematic
cases of rules applications that rule out each other.

Over time CHR has proven useful for many tasks outside its original field of
application in constraint reasoning and computational logic1, be it agent pro-
gramming, multi-set rewriting or production rule systems. Recent applications of
CHR range from type systems and time tabling to ray tracing and cancer diag-
nosis [4, 23]. In these applications, conjunctions of constraints are best regarded
as interacting collections of concurrent agents or processes.

1 Integrating deduction and abduction, bottom-up and top-down, forward and back-
ward chaining, inegrity constraints and tabulation.
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We give an overview of syntax and semantics for Constraint Handling Rules
(CHR) [8, 13] as well as of results on confluence and completion [1, 5], and on
operational equivalence [2, 3]. We then show how to program in CHR starting
with some small examples, followed by constraint solvers for Booleans, arith-
metic equations and the global lexicographic order constraint and finally give an
optimal implementation of the classical union-find algorithm.

2 Syntax

Constraints are predicates of first-order logic. We use two disjoint sets of pred-
icate symbols for two different kinds of constraints: built-in (pre-defined) con-
straint symbols which are solved by a given constraint solver, and CHR (user-
defined) constraint symbols which are defined by the rules in a CHR program.
Built-in constraints include =, true, and false. The semantics of the built-in con-
straints is defined by a consistent first-order constraint theory CT. In particular,
CT defines = as the syntactic equality over finite terms.

Definition 1. A CHR program is a finite set of rules. There are three kinds of
rules:

Simplification rule: Name @ H ⇔ C B,
Propagation rule: Name @ H ⇒ C B,
Simpagation rule: Name @ H \ H ′ ⇔ C B,

where Name is an optional, unique identifier of a rule, the head H , H ′ is a
non-empty comma-separated conjunction of CHR constraints, the guard C is a
conjunction of built-in constraints, and the body B is a goal. A goal (query, prob-
lem) is a conjunction of built-in and CHR constraints. The empty conjunction is
denoted by the built-in constraint true. A trivial guard expression “true |” can
be omitted from a rule. A CHR constraint symbol is defined in a CHR program
if it occurs in the head of a rule in the program.

Simpagation rules abbreviate simplification rules of the form

Name @ H ∧ H ′ ⇔ C H ∧ B.

Therefore they are not treated separately. But note that they can be written
and implemented more efficiently than their simplification rule correspondences.

Example 1. We define a CHR constraint for a partial order relation ≤:

r1 @ X≤X ⇔ true.

r2 @ X≤Y ∧ Y≤X ⇔ X=Y.

r3 @ X≤Y ∧ Y≤Z ⇒ X≤Z.

r4 @ X≤Y ∧ X≤Y ⇔ X≤Y.
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The CHR program implements reflexivity (r1), antisymmetry (r2), transi-
tivity (r3) and redundancy (r4) in a straightforward way. The reflexivity rule
r1 states that X≤X is logically true. The antisymmetry rule r2 means X≤Y ∧
Y≤X is logically equivalent to X=Y. The transitivity rule r3 states that the con-
junction of X≤Y and Y≤Z implies X≤Z. The redundancy rule r4 states that X≤Y

∧ X≤Y is logically equivalent to X≤Y.

3 Operational Semantics

At runtime, a CHR program is provided with an initial state and will be executed
until either no more rules are applicable or a contradiction occurs.

The operational semantics of CHR is given by a transition system (Fig. 1).
Let P be a CHR program. We define the transition relation 7→ by introducing
two computation steps (transitions), one for each kind of CHR rule. States are
goals, i.e. conjunctions of built-in and CHR constraints. States are also called
(constraint) stores. In the figure, all upper case letters are meta-variables that
stand for conjunctions of constraints. CT is the constraint theory for the built-in
constraints. Gbi denotes the built-in constraints of G, which is part of the current
state/goal.

Simplify

If (H ⇔ C B) is a fresh variant with variables x̄ of a rule in P

and CT |= ∀ (Gbi → ∃x̄(H=H
′ ∧ C))

then (H ′ ∧ G) 7→Simplify
P

(B ∧ G ∧ H=H
′ ∧ C)

Propagate

If (H ⇒ C B) is a fresh variant with variables x̄ of a rule in P

and CT |= ∀ (Gbi → ∃x̄(H=H
′ ∧ C))

then (H ′ ∧ G) 7→Propagate
P

(H ′ ∧ B ∧ G ∧ H=H
′ ∧ C)

Fig. 1. Computation Steps of Constraint Handling Rules

CHR rules are applied exhaustively, until a fixed-point is reached, to the
initial state. A simplification rule H ⇔ C B replaces instances of the CHR
constraints H by B provided the guard C holds. A propagation rule H ⇒ C B
instead adds B to H . If new constraints arrive, rule applications are restarted.

Trivial non-termination of the Propagate computation step is avoided by
applying a propagation rule at most once to the same constraints. A more con-
crete operational semantics that reflects this behavior is presented in [1].

A rule is applicable, if its head constraints are matched by constraints in the
current goal one-by-one and if, under this matching, the guard of the rule is
implied by the built-in constraints in the goal. Any of the applicable rules can
be applied, and the application cannot be undone, it is committed-choice.
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In more detail, a fresh variant of a rule is applicable to a state H ′ ∧ G if
H ′ matches its head H and if its guard C is implied by the built-in constraints
appearing in G. A fresh variant of a rule is obtained by renaming its variables
to different fresh variables, listed in the sequence x̄. Matching (one-sided unifi-
cation) succeeds if H ′ is an instance of H , i.e. it is only allowed to instantiate
(bind) variables of H but not variables of H ′. Matching is logically expressed by
equating H ′ and H but existentially quantifying all variables from the rule, x̄.
This equation H ′=H is shorthand for pairwise equating the arguments of the
constraints in H ′ and H , provided their constraint symbols are equal. Note that
conjuncts can be permuted.

We usually will drop the reference to the type of rule and to the program P
for the symbol 7→. A computation (derivation) of a goal G is a sequence S0, S1, . . .
of states with Si 7→ Si+1 beginning with the initial state S0 = G and ending in
a final state or not terminating. An initial state for a goal G is the state G. A
final state is one where either no computation step is possible anymore or where
the built-in constraints are inconsistent. The notation 7→∗ denotes the reflexive
and transitive closure of 7→.

Example 2. Recall the solver program for ≤ of Example 1. Operationally the rule
r1 removes occurrences of constraints that match X≤X. The antisymmetry rule r2
means that if we find X≤Y as well as Y≤X in the current goal, we can replace them
by the logically equivalent X=Y. The transitivity rule r3 propagates constraints.
It adds the logical consequence X≤Z as a redundant constraint, but does not
remove any constraints. The redundancy rule r4 absorbs multiple occurrences
of the same constraint.

A computation of the goal A≤B ∧ C≤A ∧ B≤C proceeds as follows:

A≤B ∧ C≤A ∧ B≤C 7→Propagate

A≤B ∧ C≤A ∧ B≤C ∧ C≤B 7→Simplify

A≤B ∧ B≤A ∧ B=C 7→Simplify

A=B ∧ B=C

Starting from a circular relationship, we have found out that the three vari-
ables must be the same.

Refined Semantics

This high-level description of the operational semantics of CHR leaves two main
sources of non-determinism: the order in which constraints of a query are pro-
cessed and the order in which rules are applied. As in Prolog, almost all CHR
implementations execute queries from left to right and apply rules top-down in
the textual order of the program. This behavior has been formalized in the so-
called refined semantics that was proven to be a concretization of the standard
operational semantics [7].

In this refined semantics that is closer to that of most implementations, a
CHR constraint in a query can be understood as a procedure that goes efficiently
through the rules of the program in the order they are written. We consider such
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a constraint to be active. When it matches a head constraint of a rule, it will
look for the other, partner constraints of the head in the constraint store and
check the guard until an applicable rule is found. If the active constraint has
not been removed after trying all rules, it will be put into the constraint store.
Constraints from the store will be reconsidered (woken) if newly added built-in
constraints constrain variables of the constraint, because then rules may become
applicable since their guards are now implied.

Parallelism

In [12] a general parallel execution model for CHR is presented. It relies on a
monotonicity property (applicable rules cannot become in-applicable during a
computation). Intuitively, in a parallel execution of a CHR program, rules can
be applied to separate parts of the problem in parallel without interference.
Analogous concurrency constructions were suggested for other (constraint) logic
programming languages, e.g. [21]. But in CHR, more parallism is possible: rules
can be applied to overlapping parts of a query if at most one of the rules removes
the overlap. This relates parallism to confluence [12].

4 Declarative Semantics

Owing to the tradition of logic and constraint logic programming, CHR features
– besides a well-defined operational semantics – a declarative semantics, i.e. a
direct translation of a CHR program into a first-order logical formula. In the case
of constraint handlers, this is a useful tool, since it strongly facilitates proofs of
a program’s faithful handling of constraints.

The logical reading (meaning) of a simplification rule

H ⇔ C B,

is a logical equivalence provided the guard holds,

∀(C → (H ↔ ∃ȳ B)),

where ∀F denotes the universal closure of a formula F and ȳ are the variables
that appear only in the body B.

The logical reading of a propagation rule

H ⇒ C B,

is an implication provided the guard holds

∀(C → (H → ∃ȳ B)).

The logical reading P of a CHR program P is the conjunction of the logical
readings of its rules united with a the constraint theory CT that defines the
built-in constraint symbols.
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Soundness and Completeness

The following theorems show that the operational and the declarative first-order-
logic semantics are strongly related.

Definition 2. A computable constraint of a state S0 is the logical reading S′

a of
a derived state of S0. An answer (constraint) of a state S0 is the logical reading
S′

n
of a final state of a computation from S0.

The following theorems are proved in [5]:

Theorem 1. (Soundness). Let P be a CHR program and S0 be an initial state.
If S0 has a computation with answer constraint S′

n
, then P ′∪CT |= ∀(S′

0 ↔ S′

n
).

Theorem 2. (Completeness). Let P be a CHR program and S0 be an initial
state with at least one finite computation. If P ′∪CT |= ∀(S′

0 ↔ S′

n), then S0 has
a computation with answer constraint S′

m
such that P ′ ∪ CT |= ∀(S′

m
↔ S′

n
).

Linear-Logic Semantics

The classical-logic declarative semantics, however, poses a problem, when applied
to non-traditional uses of CHR, i.e. CHR programs that use CHR as a general-
purpose concurrent programming language. Many implemented algorithms do
not have a first-order classical logical reading, especially when these algorithms
are deliberately non-confluent. This may lead to logical readings which are incon-
sistent with the intended meaning. This problem has recently been demonstrated
in [12, 24] and constitutes the motivation for the development of an alternative
declarative semantics. It is based on a subset of linear logic [15], which can
model resource consumption and therefore more accurately describe the opera-
tional behavior of simplification rules [6]. In the cited thesis, soundness and a
rather strong completeness theorem are proven.

5 Confluence and Completion

The confluence property of a program guarantees that any computation for a
goal results in the same final state no matter which of the applicable rules are
applied.

Definition 3. A CHR program is confluent if for all states S, S1, S2: If S 7→∗ S1

and S 7→∗ S2 then the pair of states (S1, S2) is joinable.
A pair of states (S1, S2) is joinable if there exist states T1 and T2 such that

S1 7→∗ T1 and S2 7→∗ T2 where T1 and T2 are identical up to renaming of local
variables and logical equivalence of built-in constraints.

Local variables are those that are introduced during a computation, but do
not occur in the initial state.
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To analyze confluence of a given CHR program we cannot check joinability start-
ing from any given ancestor state S, because in general there are infinitely many
such states. However for terminating programs, one can restrict the joinabil-
ity test to a finite number of “minimal” states, the so-called critical states as
explained below.

Definition 4. Let R1 be a simplification rule and R2 be a (not necessarily
different) rule, whose variables have been renamed apart. Let Hi ∧ Ai be the
head and Ci be the guard of rule Ri (i = 1, 2). Then a critical (ancestor) state
of R1 and R2 is

(H1 ∧ A1 ∧ H2 ∧ (A1=A2) ∧ C1 ∧ C2),

provided A1 and A2 are non-empty conjunctions and CT |= ∃((A1=A2) ∧ C1 ∧
C2).

Let S be a critical ancestor state of R1 and R2. If S 7→ S1 using rule R1 and
S 7→ S2 using rule R2 then the tuple (S1, S2) is a critical pair of R1 and R2.

The following theorem from [1, 5] gives a decidable, sufficient and necessary
condition for confluence of a terminating CHR program.

A CHR program is called terminating, if there are no infinite computations.
For many existing CHR programs simple well-founded orderings are sufficient to
prove termination [9, 10]. In general, such orderings are not sufficient because of
non-trivial interactions between simplification and propagation rules.

Theorem 3. A terminating CHR program is confluent iff all its critical pairs
are joinable.

Example 3. Recall the program for ≤ of Example 1. Consider a critical ancestor
state of r2 and r3 where A1 = A2 = X≤Y. This critical state is X≤Y ∧ Y≤X ∧ Y≤Z
and gives raise to the following critical pair

(S1, S2) = (X=Y ∧ X≤Z, X≤Y ∧ Y≤X ∧ Y≤Z ∧ X≤Z)

It is joinable: S1 is a final state, i.e. no further computation step is possible. A
computation beginning with S2 results in S1:

X≤Y ∧ Y≤X ∧ Y≤Z ∧ X≤Z 7→Simplify

X≤Z ∧ X≤Z ∧ X=Y 7→Simplify

X≤Z ∧ X=Y

Completion

Completion is the process of adding rules to a non-confluent program until it
becomes confluent. Rules are built from a non-joinable critical pair to allow a
transition from one of the states into the other while maintaining termination.
In contrast to other completion methods, in CHR we need in general more than
one rule to make a critical pair joinable: a simplification rule and a propagation
rule [2]. When these rules are added, new critical pairs may be produced, but
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also old non-joinable critical pairs may be removed, because the new rules make
them joinable. Completion tries to continue introducing rules this way until the
program becomes confluent. The essential part of a completion algorithm is the
introduction of rules from critical pairs.

Definition 5. Let ≫ be a termination order and let (Cud1 ∧Cbi1 , Cud2 ∧Cbi2)
be a critical pair, where the states are ordered such that Cud1 is a non-empty
conjunction and Cud1 ≫ Cud2. Then the orientation of the critical pair results
in the rules:

Cud1 ⇔ Cbi1 | Cud2 ∧ Cbi2

Cud2 ⇒ Cbi2 | Cbi1

The second rule is generated if Cud2 is a non-empty conjunction and CT 6|=
Cbi2 → Cbi1.

Example 4.

In [2] it was shown that if the completion procedure stops successfully, then
the resulting program is confluent. But completion cannot always be successful:
completion is aborted if a critical pair cannot be transformed into rules (e.g.
states cannot be ordered, or consist of different built-in constraints only). Com-
pletion may not terminate, this is the case when new rules produce new critical
pairs, which require again new rules, and so on.

6 Operational Equivalence

A fundamental and hard question in programming language semantics is when
two programs should be considered equivalent. For example correctness of pro-
gram transformation can be studied only with respect to a notion of equivalence.
Also, if modules or libraries with similar functionality are used together, one may
be interested in finding out if program parts in different modules or libraries are
equivalent. In the context of CHR, this case arises frequently when constraint
solvers written in CHR are combined. Typically, a constraint is only partially
defined in a constraint solver. We want to make sure that the operational se-
mantics of the common constraints of two programs do not differ, and we are
interested in finding out if they are equivalent.

The following definition clarifies when two programs are operationally equiv-
alent: if for each goal, all final states in one program are the same as the final
states in the other program.

Definition 6. Let P1 and P2 be programs. P1 and P2 are operationally equiva-
lent if all states are P1, P2-joinable.

A state S is P1, P2-joinable, iff there are two computations S 7→∗

P1
S1 and

S 7→∗

P2
S2, where S1 and S2 are final states, and S1 and S2 are identical up to

renaming of local variables and logical equivalence of built-in constraints.



10

In [3], the authors gave a decidable, sufficient and necessary syntactic condi-
tion for operational equivalence of terminating and confluent CHR programs2:
when testing operational equivalence, similar to our confluence test, we can re-
strict ourselves to a finite number of minimal states that consist of the head and
the guard of a rule. These minimal states are run in both programs, and their
outcome must be the same.

Definition 7. Let P1 and P2 be programs. Then a minimal state of P1 and P2

is defined as follows:

H ∧ C where (H ⊙ C B) ∈ P1 ∪ P2 and ⊙ ∈ { ⇔ , ⇒ }

Theorem 4. Two terminating and confluent programs P1 and P2 are opera-
tionally equivalent iff all minimal states of P1 and P2 are P1, P2-joinable.

An example for operational equivalence checking is in the next section.

7 Small Programs

In the following we will use the concrete ASCII syntax of CHR implementations
in Prolog (unless otherwise noted). Let ≤ and < be built-in constraints now.

7.1 Minimum Constraint

We define min as CHR constraint, where min(X,Y,Z) means that Z is the mini-
mum of X and Y:

r1 @ min(X,Y,Z) <=> X≤Y Z=X.

r2 @ min(X,Y,Z) <=> Y≤X Z=Y.

r3 @ min(X,Y,Z) <=> Z<X Y=Z.

r4 @ min(X,Y,Z) <=> Z<Y X=Z.

r5 @ min(X,Y,Z) ==> Z≤X, Z≤Y.

It can be shown that the program is terminating and confluent. The first two
rules (r1) and (r2) correspond to the usual definition of min.

But we also want to be able to compute backwards. In CHR this is achieved by
committed-choice rules that explicitely express the cases where a simplification
is possible. So the two rules (r3) and (r4) simplify min if the order between the
result Z and one of the input variables is known.

The last rule (r5) propagates constraints. It states that min(X,Y,Z) uncondi-
tionally implies Z≤X, Z≤Y. Operationally, CHR adds these logical consequences
as redundant constraints and the min constraint is kept.

To the goal min(1,2,M) the first rule is applicable resulting in M=1.
To the goal min(A,B,M), A≥B the second rule is applicable resulting in

M=B, A ≥ B.

2 To the best of our knowledge, CHR is the only programming language in practical
use that admits decidable operational equivalence
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The goal min(A,A,M) leads to A=M via rule (r1). Alternatively, rule (r2)
is applicable with the same result. However, since CHR is a committed-choice
language, only one of the rules will be applied.

The goal min(A,2,1) leads to A=1 via rule (r4).
The goal min(A,2,3) leads to failure via rule (r5).
Redundancy from a propagation rule is useful, as the goal min(A,2,2) shows.

To this goal only the propagation rule is applicable, but to the resulting state
the second rule becomes applicable:

min(A, 2, 2)
7→Propagate (r5) min(A, 2, 2), 2 ≤ A, 2 ≤ 2

≡ min(A, 2, 2), 2 ≤ A

7→Simplify (r2) 2=2, 2 ≤ A

≡ 2 ≤ A

In this way, we find out that for min(A,2,2) to hold, 2 ≤ A must hold.
Another interesting derivation involving the propagation rule is the following:

min(A, B, M), A=M

7→Propagate (r5) min(A, B, M), M ≤ A, M ≤ B, A=M

≡ min(A, B, M), M ≤ B, A=M

7→Simplify (r1) M ≤ B, A=M

Operational Equivalence We would like to know if the following two CHR
rules defining the user-defined constraint min

min(X,Y,Z) <=> X<Y Z=X.

min(X,Y,Z) <=> X≥Y Z=Y.

are operationally equivalent with these two rules

min(X,Y,Z) <=> X≤Y Z=X.

min(X,Y,Z) <=> X>Y Z=Y.

or if the union of the rules results in a better constraint solver for min.
Already the first minimal state, min(X,Y,Z) <=> X<Y, shows that the two

programs are not operationally equivalent, since it can reduce with the first rule
of the first program, but is a final state for the second program.

7.2 Fibonacci Numbers

The following terminating and confluent program computes Fibonacci numbers
in the obvious way, that is, fib(N,M) is true if M is the N-th Fibonacci number.

fib(0,M) <=> M=1.

fib(1,M) <=> M=1.

fib(N,M) <=> N>1 |

N1 is N-1, fib(N-1,M1), N2 is N-2, fib(N-2,M2), M is M1+M2.
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The Prolog predicate is computes the value of the arithmetic expression on the
right and equates it with the left argument.

As is well-known, the two recursive calls compute the same Fibonacci num-
bers again and again. We would like to reuse results of previous computations by
using memoization (tabulation). It suffices to keep the fib constraints by turning
the simplification rules above into propagation rules and to add a rule in front
that expresses the functional dependency between the first and second argument
of fib. By this simpagation rule, two computations (ongoing or finished) for the
same Fibonacci number will be merged into one.

fib(N,M1) \ fib(N,M2) <=> M1=M2.

fib(0,M) ==> M=1.

fib(1,M) ==> M=1.

fib(N,M) ==> N>1 |

N1 is N-1, fib(N-1,M1), N2 is N-2, fib(N-2,M2), M is M1+M2.

7.3 Primes Sieve

We implement the Sieve of Eratosthenes to compute primes by the following
terminating and confluent3 CHR program:

candidates(N) <=> N>1 | M is N-1,prime(N),candidates(M).

candidates(1) <=> true.

sift @ prime(I) \ prime(J) <=> J mod I =:= 0 | true.

The CHR constraint candidates(N) generates candidates for prime num-
bers, prime(M), where M is from 2 to N. The candidates prime react with each
other such that each number absorbs multiples of itself. In the end, only prime
numbers remain. The essential multi-headed simpagation rule named sift works
as follows: If there is a constraint prime(I) and some other constraint prime(J)
such that J mod I =:= 0 holds, i.e. J is a multiple of I, then keep prime(I)

but remove prime(J).
This example illustrates the use of multi-headed rules instead of explicit loops

for iteration over data. In comparison, the typical Prolog program for the Primes
Sieve is much more contrived, because one explicitely has to maintain a list of
prime candidates.

primes(N,Ps) :- candidates(2,N,Ns), sift(Ns,Ps).

candidates(F,T,[]) :- F > T.

candidates(F,T,[F|Ns1]) :- F =< T, F1 is F+1, candidates(F1,T,Ns1).

sift([],[]).

3 Consider e.g. the critical state prime(I),prime(J),prime(K), J mod I =:= 0, K

mod J =:= 0.
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sift([P|Ns],[P|Ps1]) :- filter(Ns,P,Ns1), sift(Ns1,Ps1).

filter([],P,[]).

filter([X|In],P,Out) :- 0 =:= X mod P, filter(In,P,Out).

filter([X|In],P,[X|Out1]) :- 0 =\= X mod P, filter(In,P,Out1).

Consider the declarative semantics of the CHR constraint prime as defined
by the absorb rule:

∀(M mod N = 0 → (prime(M) ∧ prime(N) ↔ prime(N))

What this logical expression actually says is that “a number is prime, if it is
a multiple of another prime number”. The problem is that the prime constraints
form an initially a range of integers representing candidates for primes. Only
upon completion of the computation (that can be regarded as normalization)
they do represent the actual primes. Predicate logic has no straightforward means
to express this dynamics, but linear logic does [6].

CHR in Java The following code implement the same rules in JCHR, the first
CHR implementation in Java, which is part of the Java Constraint Kit JCK [20].
The syntax of CHR rules has chosen to be similar to that of the host language
Java.

handler primes {

class java.lang.Integer;

class IntUtil;

constraint prime(java.lang.Integer);

constraint candidates(java.lang.Integer);

rules { variable java.lang.Integer N, M, I, J;

{candidates(1)} <=> {true} ;

if (IntUtil.gt(N, 1)) {candidates(N)} <=>

{M=IntUtil.dec(N) && prime(N) && candidates(M)};

if(IntUtil.modNull(J, I)) {prime(I) &\& prime(J)} <=> {true} sift;

}

}

A more recent implementation of CHR in Java, K.U.Leuven JCHR system
[19], uses the more traditional Prolog-style syntax of CHR.

import util.arithmetics.primitives.intUtil;

handler primes {
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constraint candidates(int);

constraint prime(int);

rules { variable int N, X, Y;

candidates(1) <=> true.

candidates(N) <=> prime(N), candidates(intUtil.dec(N)).

sift @ prime(Y) \ prime(X) <=> intUtil.modZero(X, Y) | true.

}

}

There are at least two more implementations of CHR in Java [23].

8 Constraint Solvers

8.1 Boolean Constraint Solver

Boolean (propositional logic) constraints can be solved by different techniques [18].
In the following terminating and confluent4 Boolean constraint solver [13] a lo-
cal consistency algorithm is used. It simplifies one atomic Boolean constraint
at a time into one or more syntactic equalities whenever possible. The rules for
X⊓Y = Z, which is represented in relational form as and(X,Y,Z), are as follows.
For the other connectives, they are analogous.

and(X,Y,Z) <=> X=0 | Z=0.

and(X,Y,Z) <=> Y=0 | Z=0.

and(X,Y,Z) <=> X=1 | Y=Z.

and(X,Y,Z) <=> Y=1 | X=Z.

and(X,Y,Z) <=> X=Y | Y=Z.

and(X,Y,Z) <=> Z=1 | X=1,Y=1.

For example, the first rule says that the constraint and(X,Y,Z), when it is known
that the input X is 0, can be reduced to asserting that the output Z must be
0. Hence, the constraint and(X,Y,Z), X=0 will result in X=0, Z=0. Note that
a rule for Z=0 is missing, since this case admits no simplification into syntactic
equalities.

The above rules are based on the idea that, given a value for one of the
variables in a constraint, we try to detect values for other variables. However,
the Boolean solver goes beyond propagating values, since it also propagates
equalities between variables. For example, and(1,Y,Z), neg(Y,Z) will reduce
to false, and this cannot be achieved by value propagation alone.

4 Consider e.g. the critical pair and(0,Y,1).
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8.2 Linear Polynomial Equation Solving

Typically, in arithmetic constraint solvers, incremental variants of classical vari-
able elimination algorithms [16] like Gaussian elimination for equations and
Dantzig’s Simplex algorithm for equations and inequations are implemented.

To illustrate the principle of variable elimination, we first consider equations
only. A conjunction of equations is in solved form if the left-most variable of
each equation does not appear in any other equation. We compute the solved
form by eliminating multiple occurrences of variables.

– Choose an equation a1 ∗ X1 + . . . + an ∗ Xn + b = 0.
– Make its left-most variable explicit: X1 = −(a2 ∗X2 + . . . + an ∗Xn + b)/a1.
– Replace all other occurrences of X1 by −(a2 ∗ X2 + . . . + an ∗ Xn + b)/a1.
– Normalize the resulting equations into allowed constraints (this is always

possible).
– Repeat until in solved form.

In this solved form, all determined variables (those that take a unique value) are
discovered.

Since constraints are typically processed incrementally in a constraint solver,
we do not eliminate a variable in all other equations at once, but rather consider
the other equations one by one. Also, we do not need to make a variable explicit,
but keep the original equation. Two rules suffice for the solver [13]:

eliminate @ A1*X+P1 eq 0, PX eq 0 <=>

find(A2*X,PX,P2) |

normalize(A2*(-P1/A1)+P2,P3),

A1*X+P1 eq 0, P3 eq 0.

empty @ B eq 0 <=> number(B) | zero(B).

The eliminate rule performs variable elimination. It takes any pair of equations
with a common occurrence of a variable, X. In the first equation, the variable ap-
pears left-most. This equation is used to eliminate the occurrence of the variable
in the second equation. The first equation is left unchanged.

In the guard, the built-in find(A2*X,PX,P2) tries to find the expression
A2*X in the polynom PX, where X is the common variable. The polynom P2 is
PX with A2*X removed. The built-in normalize(E,P) normalizes an arithmetic
expression E into a linear polynomial P.

The empty rule says that if the polynomial contains no more variables, then
the number B must be zero.

The solver is not confluent due to the eliminate rule, but produces the
solved form. (If a set of equations is not in solved form, then one of the rules of
the solver is applicable.)

Example 5. The two equations

1*X+3*Y+5 eq 0, 3*X+2*Y+8 eq 0
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match the eliminate rule, the variable X in the second equation is removed with
the help of

normalize(3*(-(3*Y+5)/1) + (2*Y+8), P3)

that computes P3 to be -7*Y+-7. The resulting equations are

1*X+3*Y+5 eq 0, -7*Y+-7= 0

The eliminate rule is now applicable to the equations in reversed order, i.e. Y
is removed from the first equation with the help of

normalize(3*(-(-7)/-7) + (1*X+5), P3)

The final result is:

1*X+2 eq 0, -7*Y+-7= 0

So X is determined to be -2 and Y is -1.

The solver can be extended by a rule to detect such determined variables:

determine @ A*X+B eq 0 <=> number(B) | X is -B/A.

The built-in V is E computes the result of the arithmetic expression E and
equates it with the variable V.

8.3 Lexicographic Order Global Constraint

In [11], we give an executable specification of the global constraint5 of lexico-
graphic order in CHR. In contrast to previous approaches, the implementation
is short and concise without giving up on linear time worst case time complexity.
It is incremental and concurrent by nature of CHR. It is provably correct and
confluent. It is independent of the underlying constraint system, and therefore
not restricted to finite domains. In [11], we also show completeness of constraint
propagation, i.e. that all possible consequences of the constraint are generated
by the implementation.

A lexicographic order allows to compare sequences by comparing the elements
of the sequences proceeding from start to end.

Definition 8. Given two sequences l1 and l2 of variables of the same length
n, [x1, . . . , xn] and [y1, . . . , yn], then l1�lexl2 iff n=0 or x1<y1 or x1=y1 and
[x2, . . . , xn]�lex[y2, . . . , yn].

This definition gives rise to the following logical specification:

l1�lexl2 ↔ (l1=[] ∧ l2=[]) ∨
(l1=[x|l′1] ∧ l2=[y|l′2] ∧ x<y) ∨
(l1=[x|l′1] ∧ l2=[y|l′2] ∧ x=y ∧ l′1�lexl′2)

5 A global constraint admits an arbitrary number of variables as argument.
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A First Implemention in CHR We now rewrite this logical specification into
CHR rules for the lexicographic order constraint. We assume that the lists to be
compared are given, while their elements are variables or constants. Since the
three disjuncts of the specification are mutually exclusive, we can easily turn
each clause into a CHR simplification rule where the guards ensure the mutual
exclusion.

l1 @ [] lex [] <=> true.

l2 @ [X|L1] lex [Y|L2] <=> X<Y | true.

l3 @ [X|L1] lex [Y|L2] <=> X=Y | L1 lex L2.

These rules will apply when the lists are empty or when the relationship
between the leading list elements X and Y is sufficiently known. The built-in
constraints X<Y and X=Y are in the guards, so they check if the appropriate
relationship between the variables holds. For example, the queries [1] lex [2],
[X] lex [X] and [X] lex [Y], X<Y will all reduce to true. To the queries [X]
lex [Y], [X] lex [Y], X>=Y and [X] lex [Y], X>Y no rules are applicable.

Adding Constraint Propagation While the above program is correct, the
rules do not propagate any constraints except the trivial true. We must do
better than that. We can derive a common consequence of the last two clauses,

(l1=[x|l′1] ∧ l2=[y|l′2] ∧ x<y) ∨ (l1=[x|l′1] ∧ l2=[y|l′2] ∧ x=y ∧ l′1�lexl′2) →

l1=[x|l′1] ∧ l2=[y|l′2] ∧ x≤y,

and implement it as a CHR propagation rule, where the built-in inequality con-
straint appears in the body of a rule and is thus enforced when the rule is
applied.

l4 @ [X|L1] lex [Y|L2] ==> X=<Y.

For example, to the query [R|Rs] lex [T|Ts], R 6=T only the propagation
rule is applicable and adds R=<T. This results in [R|Rs] lex [T|Ts], R<T after
simplification of the built-in constraints for inequality. Now rule l2 is applicable,
the lex-constraint is removed and the result is the remaining R<T.

However, the rules above are not sufficient, more propagations are possible.
For example, consider [R1,R2,R3] lex [T1,T2,T3], R2=T2, R3>T3. The only
way to satisfy this constraint is by asserting R1<T1, since the remaining elements
cannot be ordered in the right way if R1>=T1. In order to perform such reasoning,
we have to look forward, at the next level of recursion. If the recursive call fails,
the base case for non-empty sequences must hold. If the recursive call proceeds
to the next recursion, because the two variables are equal, we can ignore (i.e.
remove) this pair of variables.

l5 @ [X,U|L1] lex [Y,V|L2] <=> U>V | X<Y.

l6 @ [X,U|L1] lex [Y,V|L2] <=> U=V | [X|L1] lex [Y|L2].
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Admittedly, these last two rules require some insight.
Note that rules l4 and l5 are the only ones that directly impose a built-in

constraint.
Our example, [R1,R2,R3] lex [T1,T2,T3], R2=T2, R3>T3, can now be

handled. First, since R2=T2, rule l6 is applicable, and its result is R2=T2, R3>T3,

[R1,R3] lex [T1,T3]. Now rule l5 is applied, and we arrive at R2=T2, R3>T3,

R1<T1 as desired.
There are still situations that are not covered by the current set of rules. Just

replace R2=T2 in the above example by R2>=T2. The same propagation should
take place as before, but the two rules that we have added cannot be applied,
their guards are too strict.

In these situations, the current pair of variables is followed by a sequence of
variables which are pairwise in >= relation, which each could turn into a strict
inequation later on. This can be covered by modifying rule l6 into a propagation
rule and weaken its guard:

l6’@ [X,U|L1] lex [Y,V|L2] ==> U>=V | [X|L1] lex [Y|L2].

The six rules (l1 to l5 and l6’) implement a complete constraint solver
for the non-strict lexicographic order constraint for comparing sequences of the
same, given length. The rules are obviously terminating. The recursions involve
the lex-constraint only. Each recursive call proceeds with shorter lists (with one
element less each). But the solver is not as efficient as it could be.

Improving Time Complexity In [11] it is shown that a cascade of propagation
rule applications, and the subsequent simplification of the constraints produced,
can lead to a quadratic time behavior with non-optimized CHR implementations.
In order to regain linear time complexity, we try to replace the propagation rule
l6’ by an equally powerful simplification rule. Just changing ==> into <=> results
in a rule that is logically incorrect and also results in non-confluence.

A semantics-preserving translation of the propagation rule by adding the
head to the body,

[X,U|L1] lex [Y,V|L2] <=> U>=V | [X,U|L1] lex [Y,V|L2], [X|L1] lex [Y|L2],

leads to obvious non-termination. But it gives us a clue in that it shows the
problem of the repated occurences of the subsequences L1 and L2. As it turns out
(see Section on Correctness), removing L1 and L2 from the added lex constraint
preserves correctness and improves time complexity to linear.

Our lexicographic constraint solver consists now of the following 6 rules.

l1 @ [] lex [] <=> true.

l2 @ [X|L1] lex [Y|L2] <=> X<Y | true.

l3 @ [X|L1] lex [Y|L2] <=> X=Y | L1 lex L2.

l4 @ [X|L1] lex [Y|L2] ==> X=<Y.
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l5 @ [X,U|L1] lex [Y,V|L2] <=> U>V | X<Y.

l6’’@[X,U|L1] lex [Y,V|L2] <=> U>=V, L1=[_|_] |

[X,U] lex [Y,V], [X|L1] lex [Y|L2].

The additional condition L1=[ | ] in the guard of rule l6’’ avoids non-
termination in case L1=[].

Our algorithm is encoded by three pairs of rules, the first two corresponding
to base cases of the recursion, then two rules performing the obvious recursive
traversal of the sequences to be compared and finally two covering a not so
obvious special case when the lexicographic constraint has a unique solution.

9 Example: The Union-Find Algorithm

The classical union-find (also: disjoint set union) algorithm was introduced by
Tarjan in the seventies [26]. This essential algorithm efficiently solves the problem
of maintaining a collection of disjoint sets under the operation of union [14]. It
is the basis for many graph algorithms and for dealing with equality, e.g. in
unification algorithms.

We have chosen union-find as an example, because it was recently shown how
to implement it with optimal time complexity in CHR [24], something that is not
known to be possible in other pure logic programming languages like Prolog. An
analysis of the algorithm appears in [22], and a parallelization of the algorithm
using confluence analysis is discussed in [12].

The union-find algorithm maintains disjoint sets under union. Each set is
represented by a rooted tree, whose nodes are the elements of the set. The root
is called the representative of the set. The representative may change when the
tree is updated by a union operation. With the algorithm come three operations:

– make(X): generate a new tree with the only node X, i.e. X is the root.
– find(X): follow the path from the node X to the root of the tree by repeatedly

going to the parent node of the current node until the root is reached. Return
the root as representative.

– union(X,Y): to join the two trees, find the representatives of X and Y (they
are roots). Then link them by making one point to the other.

The following CHR program implements the operations and data structures
of the basic union-find algorithm as CHR constraints [24].

make @ make(A) <=> root(A).

union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B \ find(A,X) <=> find(B,X).

findRoot @ root(A) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.

link @ link(A,B), root(A), root(B) <=> B ~> A, root(A).
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The constraints make/1, union/2, find/2 and link/2 define the operations.
The find operation is implemented as a relation find/2 whose second argument
returns the result. link/2 is an auxiliary operation for performing union of two
roots. The tree (data) constraints root/1 and ~>/2 (“points to”) represent the
tree data structure.

The basic algorithm requires O(N) time per find (and union) in the worst
case, where N is the number of elements (make operations). With two inde-
pendent optimizations that keep the tree shallow and balanced, one can achieve
logarithmic worst-case and quasi-constant (i.e. almost constant) amortized run-
ning time per operation.

The first optimization is path compression for find. It moves nodes closer to
the root after a find. After find(X) returned the root of the tree, we make every
node on the path from X to the root point directly to the root.

The second optimization is union-by-rank. It keeps the tree shallow by point-
ing the root of the smaller tree to the root of the larger tree. Rank refers to an
upper bound of the tree depth (tree height). If the two trees have the same rank,
either direction of pointing is chosen but the rank is increased by one. With this
optimization, the height of the tree can be bound by log(N). Thus the worst
case time complexity for a single find or union operation is O(log(N)).

The following CHR program implements these optimizations.

make @ make(A) <=> root(A,0).

union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B, find(A,X) <=> find(B,X), A ~> X.

findRoot @ root(A,_) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.

linkLeft @ link(A,B), root(A,N), root(B,M) <=> N>=M |

B ~> A, N1 is max(N,M+1), root(A,N1).

linkRight @ link(B,A), root(A,N), root(B,M) <=> N>=M |

B ~> A, N1 is max(N,M+1), root(A,N1).

When compared to the basic version of the algorithm implementation, we
see that root has been extended with a second argument that holds the rank of
the root node.

The rule findNode has been extended for immediate path compression: the
logical variable X serves as a place holder for the result of the find operation. The
link rule has been split into two rules linkLeft and linkRight to reflect the
optimization of union-by-rank: The smaller ranked tree is added to the larger
ranked tree without changing its rank. When the ranks are the same, either tree
is chosen (both rules are applicable) and the rank is incremented.

10 Summary and Outlook

You will hear it at the tutorial. Instead here are some late breaking news: The
paper [17] introduces CHR machines, analogous to RAM and Turing machines.
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It shows that these machines can simulate each other in polynomial time, thus
establishing that CHR is turing-complete and, more importantly, that every
algorithm can be implemented in CHR with best known time and space com-
plexity.
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24. T. Schrijvers and T. Frühwirth. Optimal Union-Find in Constraint Handling
Rules, Programming Pearl. Journal of Theory and Practice of Logic Programming
(TPLP), to appear.

25. T. Schrijvers, P. J. Stuckey, and G. J. Duck. Abstract interpretation for constraint
handling rules. In PPDP ’05: Proceedings of the 7th ACM SIGPLAN international
conference on Principles and practice of declarative programming, pages 218–229,
New York, NY, USA, 2005. ACM Press.

26. R. E. Tarjan and J. van Leeuwen. Worst-case Analysis of Set Union Algorithms.
J. ACM, 31(2):245–281, 1984.

Appendix: Additional Selected Recent Constraint

Handling Rules Papers by Topic

Since this paper does not discuss implementation and application of CHR, here is a list
of publications in those areas. Papers where chosen in June 2005 based on contents,
popularity, publication type, recency, presentation. Most paper are available with links
at the CHR webpages [23].

Implementation/Compilation/Transformation/Extension of CHR

COMPILATION/IMPLEMENTATION:

• T. Schrijvers, B. Demoen, G. Duck, P. Stuckey, and T. Frühwirth, Automatic im-
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• C. Holzbaur and T. Frühwirth, A Prolog Constraint Handling Rules Compiler and
Runtime System, Special Issue Journal of Applied Artificial Intelligence on Constraint
Handling Rules (C. Holzbaur and T. Frühwirth, Eds.), Taylor & Francis, Vol 14(4),
April 2000.
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Selected Papers, Guest Eds.: Marco Comini and Moreno Falaschi, Vol. 76 of Electronic
Notes in Theoretical Computer Science (ENTCS), 2002.
• Armin Wolf, Intelligent Search Strategies Based on Adaptive Constraint Handling
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Theory, Architectur and Application, Invited Talk, First CHR Workshop, University
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∗ Armin Wolf, Adaptive Constraint Handling with CHR in Java, CP, LNCS 2239,
2001.
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of CHR derivations, Special Issue Journal of Applied Artificial Intelligence on Con-
straint Handling Rules (C. Holzbaur and T. Frühwirth, Eds.), Taylor & Francis, Vol
14(4), April 2000.
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straints and Abduction, FQAS 2000.
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nal of Theory and Practice of Logic Programming TPLP 1(6), pp. 751-777, November
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Popular Application Areas of CHR
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• Michael Thielscher, FLUX: A Logic Programming Method for Reasoning Agents,
Special Issue of Theory and Practice of Logic Programming on Constraint Handling
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• Christian Seitz, Bernhard Bauer, Michael Berger, Multi Agent Systems Using Con-
strains Handling Rules, IC-AI 2002, Las Vegas, Nevada, USA, 2002.
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• Henning Christiansen, CHR Grammars, Special Issue of Theory and Practice of Logic
Programming on Constraint Handling Rules, to appear 2005.
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Rule Approach, Springer LNCS 3315, 2004.
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10th Conf. of the European Chapter of the Association for Computational Linguistics
(EACL-03), Budapest, Hungary, April 2003.

TYPES:

• PJ Stuckey, M Sulzmann, A theory of overloading, To appear in ACM Transactions
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∗ Gregory J. Duck, Simon Peyton Jones, Peter J. Stuckey, and Martin Sulzmann, Sound
and Decidable Type Inference for Functional Dependencies, European Symposium on
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dling Rules (C. Holzbaur and T. Frühwirth, Eds.), Taylor & Francis, Vol 14(4), April
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• T. Frühwirth and P. Hanschke, Terminological Reasoning with Constraint Handling
Rules, Chapter in Principles and Practice of Constraint Programming (P. Van Henten-
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SOFTWARE ENGINEERING/TESTING:
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Slotosch, E. Aiglstorfer and S. Kriebel, Intl. Journal on Software Tools for Technology
Transfer (STTT), Volume 5, Numbers 2-3, Springer Verlag, March 2004.
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