
A Devil’s Advocate against Termination of Direct Recursion

Thom Frühwirth
University of Ulm, Germany

www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/

Abstract
A devil’s advocate is one who argues against a claim, not as a com-
mitted opponent but in order to determine the validity of the claim.
We are interested in a devil’s advocate that argues against termina-
tion of a program. He does so by producing a maleficent program
that can cause the non-termination of the original program. By in-
specting and running the malicious program, one may gain insight
into the potential reasons for non-termination and produce coun-
terexamples for termination.

We introduce our method in the concurrent programming lan-
guage Constraint Handling Rules (CHR). Like in other declarative
languages, non-termination occurs through unbounded recursion.
Given a self-recursive rule, we automatically generate one or more
devil’s rules from it. The construction of the devil’s rules is straight-
forward and involves no guessing. The devil’s rules can be simple.
For example, they are non-recursive for rules with single recursion.

We show that the devil’s rules are maximally vicious in the
following sense: For any program that contains the self-recursive
rule and for any infinite computation through that rule in that
program, there is a corresponding infinite computation with the
recursive rule and the devil’s rules alone. In that case, the malicious
rules serve as a finite witness for non-termination. On the other
hand, if the devil’s rules do not exhibit an infinite computation, the
recursive rule is unconditionally terminating. We also identify cases
where the static analysis of the devil’s rule decides termination or
non-termination of the recursive rule.

Categories and Subject Descriptors I.2.2 [Automatic Program-
ming]: Program verification; I.2.2 [Automatic Programming]:
Program transformation; D.2.4 [Software/Program Verification]:
Formal methods; D.3.2 [Language Classifications]: Constraint
and logic languages; D.3.2 [Language Classifications]: Concur-
rent, distributed, and parallel languages

General Terms Algorithms, Verification

Keywords Non-Termination, Termination, Program Transforma-
tion, Constraint Reasoning, Constraint Handling Rules

1. Introduction
It is well known that termination is undecidable for Turing-
complete programming languages. Thus, there is a long tradition

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPDP ’15, July 14–16, 2015, Siena, Italy.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3516-4/15/07. . . $15.00.
http://dx.doi.org/10.1145/2790449.2790518

in research on analysis methods to tame the problem by semi-
automatic or approximative approaches. Here we turn the prob-
lem around - we look at the dual problem of non-termination. We
present a devil’s advocate algorithm that argues against termina-
tion. It produces a maleficent program that can cause the non-
termination of the original program. The devil’s program may be
simpler than the orginal one, for example, it can be non-recursive
and thus terminating. The malicious program can form an alterna-
tive basis for dynamic and static termination analysis. When it is
run, it can be quite useful in debugging, providing counterexamples
for termination. We can also derive conditions for both termination
and non-termination, as we will show in this paper.

We introduce our devil’s advocate method in the programming
language Constraint Handling Rules (CHR). CHR is a practical
concurrent, declarative constraint-based language and versatile
computational formalism at the same time. This allows us to oper-
ate on a high level of abstraction, namely first-order predicate logic.
In this paper, we consider direct recursion. We think that this set-
ting is best for introducing and demonstrating our novel approach
to (non-)termination analysis. At the same time, we are confident
that our devil’s advocate technique carries over to other types of re-
cursion and in general to traditional programming languages with
while-loops as well.

The following program for determining if a number is even will
serve as a running example in our paper. It also serves as a first
overview of the characteristic features of the CHR language.

Example 1. In CHR, we use a first-order logic syntax, but variable
names start with upper-case letters, while function and predicate
symbols start with lower-case letters. Predicates will be called
constraints. The built-in binary infix constraint symbol = stands
for syntactical equality. For the sake of this example, numbers are
expressed in successor notation. The user-defined unary constraint
even can be implemented by two rules

even(X) , X=0 true.
even(X) , X=s(Y) Y=s(Z) ^ even(Z).

The first rule says that X is even if it equals the number 0. The
recursive rule says that X is even, if it is the successor of some
number Y , and then the predecessor of this number Z is even.
X=s(Y) is a guard, a precondition for the applicability of the rule.
It serves as a test, while Y=s(Z) in the right-hand-side of the rule
asserts an equality.

In logical languages like CHR, variables cannot be overwritten,
but they can be without value (unbound). For example, if X is
s(s(A)), then it will satisfy the guard, and Y will be s(A). If X
is unbound, then the guard does not hold. If the variable X later
becomes (partially) bound in a syntactic equality, the computation
of even may resume.

CHR is a committed-choice language, i.e. there is no backtrack-
ing in the rule applications. Computations in CHR are sequences of
rule applications starting with a query and ending in an answer. To
the query even(0) the first rule applies, the answer is true. The query

Rule Transformation Tool now available (use "Devil" options):
http://pmx.informatik.uni-ulm.de/chr/translator/index.php

even(N) delays, since no rule is applicable. The answer is the query
itself. To the query even(s(N)) the recursive rule is applicable once,
the (conditional) answer is N=s(N 0) ^ even(N 0).

For the recursive rule of even, the devil’s advocate just con-
structs the non-recursive propagation rule

even(X)) X=s(Y).

(In general it may not be that simple.) In a propagation rule, the left-
hand-side constraint is not removed when the rule is applied. So this
devil’s rule observes occurrences of even(X) and maliciously adds
X=s(Y). This will trigger another application of the recursive rule
(or lead to an inconsistency if X is 0). Thus there exist programs in
which the recursive rule does not terminate.

Moreover, as we will show, any non-termination of even in
any program is in essence characterized by the behavior of its
devil’s rule. Conversely, the devil’s rule rather bluntly tells us
that termination is ensured if eventually there is a recursive goal
even(X), where the variable X is different from s(Y), including
the case where X is unbound.

In this minimalistic example, the recursive rule alone suffices to
produce non-termination. The query even(N) ^ even(s(N)) will
not terminate. Applying the recursive rule to even(s(N)) leads to
even(N) ^N=s(N 0) ^ even(N 0). Since N=s(N 0), the rule can
now be applied to even(N) and so on ad infinitum.

Related Work. While there is a vast literature on proving termi-
nation (one may start with [6] and with [17] for CHR), proving
non-termination has only recently come to the attention of program
analysis research.

Non-termination research can be found for term rewriting sys-
tems [10, 13], logic programming languages like Prolog [14, 20]
and XSB [12], constraint logic programming languages (CLP) [15]
and imperative languages like Java [4, 11, 16, 19].

In [20] non-termination of Prolog is proven by statically check-
ing for loops in a finite abstract computation tree derived from
moded queries. Similarily, [12] studies the problem of non-termin-
ation in tabled logic engines with subgoal abstraction, such as XSB.
The algorithms proposed analyse forest logging traces and output
sequences of tabled subgoal calls that are the likely causes of non-
terminating cycles.

The papers [15, 16] give a criterion for detecting non-terminating
atomic queries with respect to binary CLP rules. The approach is
based on abstracting states by so-called filters and proving a recur-
rence. The recurrence criterion is similar to the one in [11].

For Java, the approach is often to translate into declarative lan-
guages and formalisms, e.g. into term rewriting systems [4], into
logical formulae [19] and into CLP [16]. However, these transla-
tions are abstractions and in general this results in a loss of accu-
racy. The method in [11] for imperative languages such as Java is
incomplete because the loop must be periodic. So it cannot deal
with nested loops.

Overall, most research on non-termination can be seen as being
based on the approach that is explained in [11]. It is a combination
of dynamic and static analysis. One searches for counterexamples
for termination. First, one dynamically enumerates a certain class
of candidate execution paths (computations) until a state is re-
entered. This has the drawback of combinatorial explosion in the
number of paths. Then the candidate paths are checked if they
contain a loop, i.e. a syntactic cycle.

The check amounts to proving the existence of a so-called
recurrence set of states (transition invariants on states that are
visited infinitely often). This problem is formulated as a constraint
satisfaction problem and it is equivalent to the one for invariant
generation.

As a reviewer of this paper has pointed out, the recent paper [5]
also builds on recurrence sets, but avoids the need for periodicity in
the non-terminating computation. This work is done in the context
of a simple imperative while-loop language and the utilization of
tools for proving safety properties. The approach performs an un-
derapproximation search of the program to synthesize a reachable
non-terminating loop, i.e. to produce an abstraction of the program
with assumptions that lead to non-termination. The algorithms are
quite different from our straightforward construction, but the un-
derlying insights into the problem of non-termination seem similar.
In particular, this approach, like ours, also produces a (kind of ab-
stracted) program as a witness for non-termination. A further inves-
tigation of the relationship between the methods seems warranted.

Our Devil’s Advocate Method. To the best of our knowledge our
technique of constructing a malicious program by a devil’s advo-
cate algorithm is novel. The construction of the devil’s rules is a
straightforward program transformation. Our approach works well
in a concurrent setting. Our proposed methodology is fully static,
it avoids the exploration of all possible paths in a program’s exe-
cution. Furthermore, there is no need for guessing transition invari-
ants, because they are readily encoded in the malicious program.
Our approach covers both periodic, aperiodic and nested loops (in
the form of direct recursion), because there is no need to detect
syntactic cycles.

The constructed devil’s rules immediately give rise to a non-
terminating computation, if there exists one at all. This maximally
vicious computation is the abstraction of all non-terminating com-
putations, but at the same time it is an executable program. This is
made possible by the use of constraints as abstraction mechanism.

Our approach differs from most existing ones in that we ex-
plore non-terminating executions that are essential in that they are
independent of the program context. The devil’s rules exactly char-
acterize what such a context in essence has to do in order to cause
non-termination. Such a maximally vicious program is more gen-
eral and more concise than characterizing the typically infinite set
of queries that would lead to (non-)termination. The the execution
of the devil’s rules may even correspond to query of infinite size
while having a compact finite representation.

The exemplary criterions for (non-)termination that we will
derive for the devil’s rules are similar to those that can be found
in the literature. In principle, a transition invariant is defined that is
a sufficient condition for the property at hand. However, in contrast
to other research, we do not have to search for invariants or guess
them by a heuristic or a process of abstraction steps. Our invariants
can be readily derived from the devil’s rules, that in turn are built
from the culprit recursive rules.

Outline of the Paper. In the Preliminaries we introduce syntax and
semantics of Constraint Handling Rules (CHR). In Section 3, we
define the construction of malicious rules from directly recursive
simplification rules. They give rise to maximally vicious compu-
tations, that never terminate successfully. We show that each non-
terminating computation of the recursive rule contains a vicious
computation. In Section 4, we look at static analysis of the devil’s
rules. We propose sufficient conditions for termination and non-
termination of vicious computations. In Section 5, we address the
simplification of devil’s rules and give some more extended ex-
amples for our devil’s advocate approach, before we conclude the
paper. Readers who want a quick overview of the devil’s advocate
method can skip the proofs.

2. Preliminaries
In this section we give an overview of syntax and semantics for
Constraint Handling Rules (CHR) [9]. We assume basic familiarity
with first-order predicate logic and state transition systems.

Simplify
If (r : H , C B) is a disjoint variant of a rule in P
and CT |= 8(Gbi ! 9x̄(H=H 0 ^ C))
then (H 0 ^G) 7!r (B ^G ^H=H 0 ^ C)

Propagate
If (r : H) C B) is a disjoint variant of a rule in P
and CT |= 8(Gbi ! 9x̄(H=H 0 ^ C))
then (H 0 ^G) 7!r (H 0 ^B ^G ^H=H 0 ^ C)

Simpagate
If (r : H1 \H2) C B) is a disjoint variant of a rule in P
and CT |= 8(Gbi ! 9x̄(H1^H2)=(H 0

1^H 0
2) ^ C))

then (H 0
1 ^H 0

2 ^G) 7!r

(H 0
1 ^B ^G ^ (H1^H2)=(H 0

1^H 0
2) ^ C)

Figure 1. Transitions of Constraint Handling Rules

Abstract Syntax of CHR. Constraints are distinguished predi-
cates of first-order predicate logic. We use two disjoint sets of pred-
icate symbols (or: constraint names) for two different kinds of con-
straints: built-in (or: pre-defined) constraints which are handled by
a given constraint solver, and user-defined (or: CHR) constraints
which are defined by the rules in a CHR program. A CHR program
is a finite set of rules. There are three kinds of rules:

Simplification rule: r : H , C B,
Propagation rule: r : H) C B,
Simpagation rule: r : H1 \H2 , C B,

where r: is an optional, unique identifier of a rule, the head denoted
by H , H1 and H2 is a non-empty conjunction of user-defined
constraints, the guard C is a conjunction of built-in constraints,
and the body B is a goal. A goal (or: query) is a conjunction of
built-in and CHR constraints.

Conjuncts can be permuted since conjunction is associative and
commutative. We will, however consider conjunction not to be
idempotent, since we allow for duplicates, i.e. multiple occurrences
of user-defined constraints. The empty conjunction is denoted by
the built-in constraint true , which is the neutral element of the
conjunction operator ^. A trivial guard expression “true |” can
be omitted from a rule.

When it is convenient, we allow for generalized simpagation
rules. In such rules, either H1 or H2 may be empty. If H1 is empty,
we may write the rule as a simplification rule. If H2 is empty, we
may write it as a propagation rule.

Abstract Operational Semantics of CHR. The operational se-
mantics of CHR is given by the state transition system in Fig. 1. In
the figure, all single upper-case letters except P are meta-variables
that stand for goals. Let P be a CHR program. Let the variables in
a disjoint variant of a rule be denoted by x̄. Let CT be a complete
and decidable constraint theory for the built-in constraints, includ-
ing the trivial true and false as well as syntactical equivalence =.
For a goal G, the notation Gbi denotes the built-in constraints of G
and Gud denotes the user-defined constraints of G.

A disjoint (or: fresh) variant of an expression is obtained by
uniformly replacing its variables by different, new (fresh) variables.
A variable renaming is a bijective function over variables.

Starting with a given initial state (or: query), CHR rules are ap-
plied exhaustively, until a fixed-point is reached. A rule is applica-
ble, if its head constraints are matched by constraints in the current
goal one-by-one and if, under this matching, the guard of the rule
is logically implied by the built-in constraints in the goal. An ex-
pression of the form CT |= 8(Gbi ! 9x̄(H=H 0 ^ C)) is called

applicability condition. Any one of the applicable rules can be ap-
plied in a transition, and the application cannot be undone, it is
committed-choice.

A simplification rule H , C B that is applied removes
the user-defined constraints matching H and replaces them by B
provided the guard C holds. A propagation rule H) C B
instead keeps H and adds B. A simpagation rule H1\H2 , C B
keeps H1, removes H2 and adds B. If new constraints arrive, rule
applications are restarted.

States are goals. In a transition (or: computation step) S 7!r T ,
S is called source state and T is called target state. A computation
of a goal G in a program P is a connected sequence Si 7! Si+1

beginning with the initial state S0 = G and ending in a final state
(or: answer) or the sequence is non-terminating (or: diverging). The
length of a computation is the number of its computation steps. The
notation 7!P

n denotes a finite computation of length n where rules
from P have been applied. Given a computation starting with S0 in
which a state Si with (0 i) occurs, then the computation up to
Si is a prefix of the computation.

Note that built-in constraints in a computation are accumulated,
i.e. added but never removed, while user-defined constraints can be
added as well as removed.

In the transitions of the abstract semantics as given, there are
two sources of trivial non-termination. For simplicity, we have
not made their avoidance explicit in the transitions of the abstract
semantics. (Concurrency is also not made explicit in the semantics
given.)

First, if the built-in constraints Gbi in a state are inconsistent
(or: unsatisfiable), any rule could be applied to it, since the applica-
bility condition trivially holds since the premise of the logical im-
plication is false. We call such a state failed. Non-termination due
to failed states is avoided by requiring Gbi to be consistent when a
rule is applied. In other words, any state with inconsistent built-in
constraints is a (failed) final state.

Second, a propagation rule could be applied again and again,
since it does not remove any constraints and thus its applicability
condition always continues to hold after the rule has been applied
(due to CHR’s monotonicity). This non-termination is avoided
by applying a propagation rule at most once to the same user-
defined constraints. Note that syntactically identical user-defined
constraints are not necessarily the same, since we allow for du-
plicates. In implementations, each user-defined constraint has a
unique identifier, and only constraints with the same identifier are
considered to be the same for this purpose.

3. Devil’s Advocate against Termination of Direct
Recursion

Our devil’s advocate algorithm constructs one or more malicious
rules from a given recursive rule. The idea behind these devil’s rules
can be explained as follows: A devil’s rule observes the computa-
tion. When it sees constraints that could come from the body of the
recursive rule, it suspects the recursive rule has just been applied. It
then maliciously adds the constraints necessary to trigger another
recursive step by making the recursive rule applicable.

We therefore first prove that this interplay between the recursive
rule and the devil’s rule can only lead to non-termination or a
failed state. We call such a computation maximally vicious. This is
because the devil’s rules capture the essence of any non-termination
of the recursive rule, no matter in which program. Even if the
devil’s rule is not present, every infinite computation through the
recursive rule will remove and add some constraints in exactly the
same way as the devil’s rule would do.

We therefore prove a second claim, namely that any non-
terminating computation without the devil’s rule contains the max-

imally vicious computation with the devil’s rule. Therefore, if the
devil’s rules do not exhibit an infinite computation, the recursive
rule is unconditionally terminating.

3.1 Direct Recursion, Devil’s Advocate and Devil’s Rules
In this paper, we consider direct recursion expressed by simplifica-
tion rules. From them, our devil’s advocate algorithm will construct
devil’s rules.

Definition 1. A CHR rule is direct recursive (or: self-recursive) if
the head and the body of the rule have common predicate symbols.
A constraint is direct recursive if its predicate symbol occurs in the
head and in the body of a rule.

An overlap is a conjunction built from two goals, where one or
more constraints from different goals are equated pairwise.

Definition 2. Given two conjunctions of constraints A of the form
A1 ^ A2 and B of the form B1 ^ B2, where A2 and B2 are non-
empty conjunctions. An overlap A ⇧ B at the common constraints
A2 and B2 is a conjunction of the form A1 ^A2 ^B1 ^A2=B2.
The goal A2 ^A2=B2 is called the common part of the overlap.

Note an overlap is only possible if the two goals have common
predicate symbols. If there are more than two such constraints,
there are several overlaps.

Now the rules constructed by the devil’s advocate come into
play.

Definition 3. Given a self-recursive simplification rule r of the
form

r : H , C Bbi ^Bud,
where Bbi denotes the built-in constraints and Bud denotes the
user-defined constraints comprising the rule body B. Let r0 be a
disjoint variant of the rule r of the form

r0 : H 0 , C0 B0
bi ^B0

ud.

For each overlap (Bud ⇧H 0) at the common constraints OBud

and OH0 , we generate a devil’s rule.
A devil’s rule d for the rule r is a generalised simpagation rule

of the form

d : OBud \RBud , C ^Bbi C0 ^OBud=OH0 ^RH0

where Bud=(OBud ^RBud) and H 0=(OH0 ^RH0).

Note that the effect of the devil’s rule is to manipulate exactly those
constraints that occur in its recursive rule. In particular, it in effect
replaces all user-defined body constraints of the recursion by the
head constraints that are needed for the next recursive step.

Example 2. We continue with Example 1 and its rule

even(X) , X=s(Y) Y=s(Z) ^ even(Z).

The rule for even is direct single recursive, so there is only one
overlap and the resulting single devil’s rule is not recursive. Also,
the goal RBud is empty, thus we can write the generated devil’s
rule as a propagation rule

even(Z))X=s(Y)^Y=s(Z)X 0=s(Y 0)^even(Z)=even(X 0).

In Section 5 we will simplify this rule into even(X)) X=s(Y).

Example 3. Consider a rule scheme for tree traversal of the form

traverse(node(L, V,R)) , C B^ traverse(L)^ traverse(R).

It yields two devil’s rules that are variants of each other
traverse(L) \ traverse(R) , C ^B

C0 ^ (traverse(L)=traverse(node(L0, V 0, R0))),
traverse(R) \ traverse(L) , C ^B

C0 ^ (traverse(R)=traverse(node(L0, V 0, R0))).

3.2 Maximally Vicious Computations
We now prove that the devil’s rules will cause infinite computations
or failed states when these devil’s rules and their recursive rule are
applied alternatingly. For the proof we need the following lemmata.

Lemma 1. Given goal C consisting of built-in constraints only and
a goal H consisting of user-defined constraints only. Let the pairs
(H,C) with variables x and (H 0, C0) with variables y be disjoint
variants. Then the applicability condition

CT |= 8x̄(C ! 9ȳ(H 0=H ^ C0))

trivially holds.

Proof. Since H and H 0 are disjoint variants, the syntactic equality
H 0=H is satisfiable. It implies a variable renaming between the
variables in x and y that occur in H and H 0, respectively. We apply
this variable renaming, replacing variables in y in the applicabil-
ity condition by the corresponding variables in x. This can only
affect the consequent (H 0=H ^ C0) of the condition, where the
constraints with the variables y occur.

In particular, the variable renaming will turn the equality
H 0=H into H=H . Since this trivially holds, we can remove the
equality. Moreover, the variable renaming will replace variables in
C0 by their corresponding variables in C. Since C and C0 are dis-
joint variants, the variables from H will occur in the same positions
in both expressions. Thus the two expressions will still be variants
after the variable replacement.

This means that the premise and conclusion of the resulting
implication can be written as 8w̄, x̄0(C[x̄, x̄0] ! 9ȳ0C0[x̄, ȳ0]),
where x̄ = w̄, x̄0 and x̄0 are the variables from C and ȳ0 are the vari-
ables from C0 (and thus y) that have not been replaced. This impli-
cation is logically equivalent to 8x̄(9x̄0C[x̄, x̄0] ! 9ȳ0C0[x̄, ȳ0]),
which is a tautology in first order predicate logic.

Lemma 2. Given a self-recursive rule r of the form

H⇤ , C⇤ B⇤bi ^B⇤ud,

and its devil’s rule d of the form

OBud \RBud , C ^Bbi C0 ^OBud=OH0 ^RH0 .

Note that Bud=(OBud ^ RBud) and H 0=(OBud ^ RH0) since
OBud=OH0 .

Then according to the abstract semantics of CHR, any transition
with r and then d has the form

(H ^G) 7!r

(B⇤bi ^B⇤ud ^G ^H⇤=H ^ C⇤) 7!d

((C0 ^OBud=OH0 ^H 0) ^
B⇤bi ^G ^H⇤=H ^ C⇤ ^ (Bud=B⇤ud ^ C ^Bbi))

with CT |= 8(Gbi ! 9x̄(H⇤=H ^ C⇤)), where x̄ are the
variables of a disjoint variant of the rule r, and with CT |=
8((B⇤bi ^ Gbi ^H⇤=H ^ C⇤) ! 9ȳ(Bud=B⇤ud ^ C ^ Bbi)),
where ȳ are the variables of a disjoint variant of the devil’s rule d.

We will refer to the above transitions as transition scheme.

Definition 4. A maximally vicious computation of the self-recursive
simplification rule r and its devil’s rules D is of the form

(S0
0=(Hr^Cr)) S0

0 7!r T 0
0 . . . S

0
i 7!r T 0

i 7!D S0
i+1 . . . (i � 0),

where the pair (Hr, Cr) is a disjoint variant of the head and guard
of the rule r.

In a maximally vicious computation, the only user-defined con-
straints contained in the states come from the recursive rule.

Lemma 3. Given a maximally vicious computation of a recursive
rule r with head H and body Bbi ^Bud and one of its devil’s rules
d.

Then the states Si contain as the only user-defined constraints a
disjoint variant of the head H , and the states Ti contain as the only
user-defined constraints a disjoint variant of the body Bud.

Proof. By Definition 4, the first state S0 contains the user-defined
constraints Hr , which are a disjoint variant of the head of the rule
r. Consider the transition scheme of Lemma 2. For our inductive
proof assume that H is a disjoint variant of the head of the rule
r and that G only contains built-in constraints, i.e. G = Gbi.
An application of rule r replaces user-defined constraints H by
B⇤ud. An application of a devil’s rule d of r replaces user-defined
constraints B⇤ud by H 0, which is a disjoint variant of the head of
rule r by Definition 3.

Theorem 1. All maximally vicious computations of a self-recursive
simplification rule r and its devil’s rules D are either non-termin-
ating or end in a failed state.

Proof. We prove the claim by induction over the computation steps.
The base case consists of showing that for any devil’s rule d in D
there exists a computation

(Hr ^ Cr) = S0
0 7!r T 0

0 7!d S0
1,

or a prefix of this computation ending in a failed state. The induc-
tion step consists of two cases that together prove the claim:

1. If the self-recursive rule r has been applied in a computation
and the resulting state is not failed, a devil’s rule d from D
associated with r is applicable in the next computation step, i.e.

(i � 0) ^ (S0
i 7!r T 0

i) ^ 9(T 0
ibi) ! (T 0

i 7!D S0
i+1).

2. If a devil’s rule d from D has been applied in a computation
and the resulting state is not failed, the self-recursive rule r
associated with it is applicable in the next computation step,
i.e.

(i � 0) ^ (T 0
i 7!D S0

i+1) ^ 9(S0
i+1bi) ! (S0

i+1 7!r Ti+1).

Base Case. According to the abstract semantics of CHR and
Lemma 2, when we apply the direct recursive rule r of the form

r : H⇤ , C⇤ B⇤bi ^B⇤ud,

to the state S0
0 = (Hr ^ Cr), the transition is

(Hr ^ Cr) 7!r (B⇤bi ^B⇤ud ^ Cr ^H⇤=Hr ^ C⇤)

with CT |= 8(Cr ! 9x̄(H⇤=Hr ^ C⇤)), where x̄ are the
variables of the rule r. By construction according to Definition 3,
the pairs (Hr, Cr) and (H⇤, C⇤) are disjoint variants. Thus we can
apply Lemma 1 to show that this applicability condition trivially
holds.

If the target state is failed, then we are done with the proof of
this case. Otherwise we apply to B⇤ud in the target state a devil’s
rule d of the rule r of the form

d : OBud \RBud , C ^Bbi C0 ^OBud=OH0 ^RH0 .

This yields the transition

(B⇤bi ^B⇤ud ^ Cr ^H⇤=Hr ^ C⇤) 7!d

(OBud ^ (C0 ^OBud=OH0 ^RH0) ^
B⇤bi ^ Cr ^H⇤=Hr ^ C⇤ ^ (Bud=B⇤ud ^ C ^Bbi))

with CT |= 8(G0
bi ! 9ȳ(Bud=B⇤ud ^ C ^ Bbi)), where ȳ are

the variables of the devil’s rule d. The built-in constraints G0
bi of the

source state are (B⇤bi^Cr^H⇤=Hr^C⇤), and thus the following
applicability condition must hold

CT |= 8((B⇤bi^Cr^H⇤=Hr^C⇤) ! 9ȳ(Bud=B⇤ud^C^Bbi)).

To show that this condition holds, it suffices to show that

CT |= 8((C⇤ ^B⇤bi) ! 9ȳ(Bud=B⇤ud ^ C ^Bbi)).

By Definition 3, the tuples (Bud, Bbi, C) and (B⇤ud, B⇤bi, C⇤) are
disjoint variants. Thus we can apply Lemma 1 to show that this
applicability condition trivially holds.

Induction Step Case 1. According to the abstract semantics of
CHR and Lemma 2, when we apply the direct recursive rule r of
the form

r : H⇤ , C⇤ B⇤bi ^B⇤ud,

the transition is

(H ^G) 7!r (B⇤bi ^B⇤ud ^G ^H⇤=H ^ C⇤)

with CT |= 8(Gbi ! 9x̄(H⇤=H^C⇤)), where x̄ are the variables
of the rule r and Gbi are the built-in constraints in G.

If the target state is failed, then we are done with the proof of
this case. Otherwise we apply to B⇤ud in the target state a devil’s
rule d of the rule r of the form

d : OBud \RBud , C ^Bbi C0 ^OBud=OH0 ^RH0 .

This yields the transition

(B⇤bi ^B⇤ud ^G ^H⇤=H ^ C⇤) 7!d

(OBud ^ (C0 ^OBud=OH0 ^RH0) ^
B⇤bi ^G ^H⇤=H ^ C⇤ ^ (Bud=B⇤ud ^ C ^Bbi))

with CT |= 8(G0
bi ! 9ȳ(Bud=B⇤ud ^ C ^ Bbi)), where ȳ are

the variables of the devil’s rule d. The built-in constraints G0
bi of the

source state are (B⇤bi^Gbi^H⇤=H^C⇤), and thus the following
applicability condition must hold

CT |= 8((B⇤bi^Gbi^H⇤=H^C⇤) ! 9ȳ(Bud=B⇤ud^C^Bbi)).

To show that this condition holds, it suffices to show that

CT |= 8((C⇤ ^B⇤bi) ! 9ȳ(Bud=B⇤ud ^ C ^Bbi)).

By Definition 3, the tuples (Bud, Bbi, C) and (B⇤ud, B⇤bi, C⇤) are
disjoint variants. Thus we can apply Lemma 1 to show that this
applicability condition trivially holds.

Induction Step Case 2. In a similar way we now prove the second
claim.

Any devil’s rule d for the rule r is of the form

d : OBud \RBud , C ^Bbi C0 ^OBud=OH0 ^RH0

It yields the transition

(H ^G) 7!d

(OBud ^ (C0 ^OBud=OH0 ^RH0)^G^ (Bud=H ^C ^Bbi))

with CT |= 8(Gbi ! 9ȳ(Bud=H ^ C ^ Bbi)), where ȳ are the
variables of the devil’s rule d, and Gbi are the built-in constraints
in G.

If the target state is failed, then we are done with the proof of
this case. Otherwise we apply to the target state the direct recursive
rule r of the form

r : H⇤ , C⇤ B⇤bi ^B⇤ud.

Since OBud=OH0 , we can replace OBud by OH0 in the target state.
But then we can replace OH0 ^ RH0 by H 0 and apply rule r to it.
The resulting transition is:

((C0 ^OBud=OH0 ^H 0) ^G ^ (Bud=H ^ C ^Bbi)) 7!r

((B⇤bi ^B⇤ud) ^ (C0 ^OBud=OH0) ^
G ^ (Bud=H ^ C ^Bbi) ^ (H⇤=H 0 ^ C⇤))

provided the following applicability condition holds

CT |= 8(((C0 ^OBud=OH0) ^
Gbi ^ (Bud=H ^ C ^Bbi)) ! 9x̄(H⇤=H 0 ^ C⇤)),

where x̄ are the variables of the rule r.
It suffices show that 8(C0 ! 9x̄(H⇤=H 0 ^ C⇤)). The tuples

(H⇤, C⇤) and (H 0, C0) are disjoint variants. Thus by Lemma 1 it
is a tautology.

3.3 Characterizing Non-Terminating Computations
The next theorem shows that any non-terminating computation
through a recursive rule in any program contains a maximally
vicious computation of that recursive rule and its devil’s rules. So
if there is no non-terminating maximally vicious computation, then
the recursive rule must be always terminating, no matter in which
program it occurs.

We need the following two lemmata from [2].

Lemma 4. A computation can be repeated in a state where implied
(or: redundant) built-in constraints have been removed. Let CT |=
8 (D ! C).

If (H ^ C ^D ^G) 7!⇤ S then (H ^D ^G) 7!⇤ S.

The next lemma states an important monotonicity property of
CHR.

Lemma 5. (CHR monotonicity) A computation can be repeated in
any larger context, i.e. with states in which built-in and user-defined
constraints have been added.

If G 7!⇤ G0 then (G ^H) 7!⇤ (G0 ^H).

The following definition gives a necessary, sufficient, and de-
cidable criterion for equivalence of states [18].

Definition 5. Given two states S1 = (S1bi ^ S1ud) and S2 =
(S2bi^S2ud). Then the two states are equivalent, written S1 ⌘ S2,
if and only if

CT |= 8(S1bi ! 9ȳ((S1ud = S2ud) ^ S2bi)) ^
8(S2bi ! 9x̄((S1ud = S2ud) ^ S1bi))

with x̄ those variables that only occur in S1 and ȳ those variables
that only occur in S2.

Note that this notion (operational) equivalence is stricter than log-
ical equivalence since it rules out idempotence of conjunction, i.e.
it considers multiple occurrences of user-defined constraints to be
different.

The overlap makes sure that the recursive rule is applied in
a directly recursive way, common constraints of the overlap are
denoted by Oi.

Definition 6. A non-terminating computation through a direct re-
cursive rule r

H⇤ , C⇤ B⇤bi ^B⇤ud,

in a program P is of the form

S 7!n
P S0 . . . Si 7!r Ti 7!ni

P Si+1 . . . (i � 0, n, ni � 0),

where there is an overlap at common recursive constraints Oi of r
with Ti = (TRi ^ Oi) and Si+1 = (SRi+1 ^ Oi) where Oi had
been added by r in the transition Si 7!r Ti and Oi is to be removed
by r in the transition Si+1 7!r Ti+1.

Theorem 2. Given a self-recursive rule r of the form

H⇤ , C⇤ B⇤bi ^B⇤ud,

and its devil’s rules d in D of the form

OBud \RBud , C ^Bbi C0 ^OBud=OH0 ^RH0 .

Given a non-terminating computation through r in P ,

S 7!n
P S0 . . . Si 7!r Ti 7!ni

P Si+1 . . . (i � 0, n, ni � 0).

Then there is a corresponding maximally vicious computation with
r and its devil’s rules D

(S0
0 = (Hr^Cr)) S0

0 7!r T 0
0 . . . S

0
i 7!r T 0

i 7!D S0
i+1 . . . (i � 0),

where there exist constraints Gi such that

S0
i ^G0

i ⌘ Si and T 0
i ^G0

i ⌘ Ti,

and there exist overlaps at the common constraints Oi that occur
in the states

T 0
i ⌘ (TRi ^Oi) and S0

i+1 ⌘ (SRi+1 ^Oi).

Proof. We prove the claim by induction over the transitions in the
computation. The base case is to prove that S0

0 ^ G0
0 ⌘ S0 and

T 0
0^G0

0 ⌘ T0 and the induction step means to prove S0
i^G0

i ⌘ Si

and T 0
i ^G0

i ⌘ Ti.

Base Case 1. There exists a goal G0
0 such that (S0

0 ^G0
0) = S0.

Let S0 = (H ^ G). According to the transition scheme in
Lemma 2, we know that CT |= 8(Gbi ! 9x̄(H⇤=H ^ C⇤)),
where x̄ are the variables of the rule r. As defined by the CHR
semantics, (H ^ G) does not contain variables from x̄. Let S0

0 =
(H 0

⇤ ^ C0
⇤), such that (H 0

⇤ ^ C0
⇤) does not contain variables from

(H^G) and (H⇤^C⇤). Let G0
0 be (H 0

⇤=H^G), then (S0
0^G0

0) =
((H 0

⇤ ^ C0
⇤) ^ (H 0

⇤=H ^G)).
Since H 0

⇤=H , we can replace the first conjunct H 0
⇤ by H . Since

CT |= 8(Gbi ! 9x̄(H⇤=H ^ C⇤)), and since (H 0
⇤ ^ C0

⇤) and
(H⇤ ^ C⇤) are disjoint variants, by Lemma 1 it also holds that
CT |= 8(Gbi ! 9z̄(H 0

⇤=H ^ C0
⇤)), where z are the variables

of (H 0
⇤ ^ C0

⇤). Therefore, (H 0
⇤=H ^ C0

⇤) is redundant and can be
removed according to Lemma 4. Hence (S0

0 ^G0
0) = (H ^G) =

S0.

Base Case 2. Given G0
0 = (H 0

⇤=H ^ G) from Base Case 1, we
proceed to prove (T 0

0 ^G0
0) = T0.

W.l.o.g. we apply to S0
0 and S0 the same disjoint variant of

rule r, namely H⇤ , C⇤ B⇤bi ^ B⇤ud, to reach T 0
0 and T0,

respectively.
Then we have that T0 = (B⇤bi^B⇤ud^G^H⇤=H ^C⇤) and

(T 0
0^G0

0) = ((B⇤bi^B⇤ud^C0
⇤^H⇤=H 0

⇤^C⇤)^(H 0
⇤=H^G)).

In the state (T 0
0 ^ G0

0) we can replace H⇤=H 0
⇤ by H⇤=H , since

the state also contains H 0
⇤=H . Now the states differ only in that

(H 0
⇤=H^C0

⇤) additionally occurs in (T 0
0^G0

0). Analogously to the
reasoning for the Base Case 1, we can show that this conjunction is
redundant. So these states are indeed equivalent.

Induction Step Case 1. We prove that there exists a G0
i such that

S0
i ^G0

i ⌘ Si.
According to the transition scheme in Lemma 2 we know that

any transition with r and then some d in any computation has the
form

(H ^G) 7!r

(B⇤bi ^B⇤ud ^G ^H⇤=H ^ C⇤) 7!d

((C0 ^OBud=OH0 ^H 0) ^
B⇤bi ^G ^H⇤=H ^ C⇤ ^ (Bud=B⇤ud ^ C ^Bbi))

with CT |= 8(Gbi ! 9x̄(H⇤=H ^ C⇤)), where x̄ are the
variables of a disjoint variant of the rule r, and with CT |=
8((B⇤bi ^ Gbi ^H⇤=H ^ C⇤) ! 9ȳ(Bud=B⇤ud ^ C ^ Bbi)),
where ȳ are the variables of a disjoint variant of the devil’s rule d.

In a maximally vicious computation, by Lemma 3 we know that
G above does not contain user-defined constraints, i.e. G = Gbi.

W.l.o.g. let S0
i be the last state of the above transitions.

Furthermore, any transition with r and then P in any computa-
tion has the form

(H ^G0
i�1) 7!r

(B⇤bi ^B⇤ud ^G0
i�1 ^H⇤=H ^ C⇤) 7!ni

P

(B⇤bi ^G00
i ^H⇤=H ^ C⇤).

W.l.o.g. let Si be (B⇤bi ^ G00
i ^ H⇤=H ^ C⇤). Since r is

applicable to the target state Si, G00
i must contain user-defined

constraints H 0
i such that

CT |= 8((B⇤bi ^G00
ibi ^H⇤=H ^C⇤) ! 9x̄(Hi⇤=H 0

i ^Ci⇤)),

where x̄i are the variables of a disjoint variant of rule r with head
Hi⇤ and guard Ci⇤.

By Definition 3 and Definition 6, H 0
i must overlap with B⇤ud.

This overlap at the common constraints OH0
i

in H 0
i of state Si has

its correspondence in the overlap at the common constraints OB⇤ud

in B⇤ud of state Ti. This means it must hold that CT |= 8(G00
ibi !

9(OB⇤ud=OH0
i
)).

The previous state T 0
i�1 contains Gbi. Since T 0

i�1 is contained
in Ti�1, it must be (implied) there as well. According to the CHR
semantics, built-in constraints are accumulated during a computa-
tion. Thus it must hold that CT |= 8(G00

ibi ! 9Gbi).
In the previous state T 0

i�1 it holds that

CT |= 8((B⇤bi^Gbi^H⇤=H^C⇤) ! 9z̄(Bud=B⇤ud^C^Bbi)),

where z̄ are the variables of (Bud ^ C ^ Bbi). Since T 0
i�1 is

contained in Ti�1, the implication must also hold there. Since built-
in constraints are accumulated, the implication must also hold in the
next state Si.

Putting these observation all together, we now know the state Si

is of the form
((H 0

i ^ (Hi⇤=H 0
i ^ Ci⇤) ^OB⇤ud=OH0

i
) ^Gbi ^B⇤bi ^

G000
i ^H⇤=H ^ C⇤ ^ (Bud=B⇤ud ^ C ^Bbi)),

where G000
i are the remaining constraints from G00

i . Since Bud=B⇤ud,
we can write OB⇤ud=OH0

i
as OBud=OH0

i
. Since (Hi⇤, Ci⇤) and

(H 0, C0) are disjoint variants, we can apply Lemma 1 to show that
CT |= 8(Ci⇤ ! 9(H 0=Hi⇤ ^ C0)). Finally, let G0

i = G000
i , then

S0
i ^G0

i ⌘ Si.

Induction Step Case 2. Finally, we prove that (T 0
i ^G0

i) = Ti.
We know that (S0

i ^ G0
i) = Si. Since S0

i 7!r T 0
i , by CHR

monotonicity (Lemma 5) we have that S0
i ^G0

i 7!r T 0
i ^G0

i. Thus
Ti = (T 0

i ^G0
i).

Example 4. We continue with Example 2, its recursive rule and its
simplified devil’s rule

r : even(X) , X=s(Y) Y=s(Z) ^ even(Z)

d : even(X)) X=s(Y).

For readability, we will simplify states w.r.t. equivalence ⌘ and
underline the goals to which a rule is applied.

The maximally vicious computation is

even(U) ^ U=s(V) 7!r

U=s(V) ^ V=s(Z0) ^ even(Z 0) 7!d

U=s(V) ^ V=s(Z0) ^ even(Z 0) ^ Z0=s(Y 00) 7!r . . .

The non-terminating computation for the goal even(N) ^
even(M) ^M=s(N) is

even(N) ^ even(M) ^M=s(N) 7!r

even(N) ^M=s(N) ^N=s(N 0) ^ even(N 0) 7!r

N=s(N 0)^N 0=s(N 00)^even(N00)^M=s(N)^even(N 0) 7!r ..

This computation contains the maximally vicious computation
when we rename the variables appropriately. Note that the sec-
ond application of the rule r to the other, even(N) constraint is
considered as the arbitrary transition sequence between recursive
steps using rules from a given program P . The actual infinite com-
putation differs from the maximally vicious computation only in an
additional even constraint (that we have set in standard font style).

4. Static Termination and Non-Termination
Analysis with Devil’s Rules

We identify cases where the static analysis of the devil’s rules
decides termination or non-termination of the recursive rule in
any program as exhibited by a maximally vicious computation.
These conditions are just meant to be indicative of the potential
of our devil’s advocate approach, they are a starting point in the
search for interesting conditions. The first lemma gives a necessary
condition for non-termination. The negation of the condition thus
gives a sufficient condition for termination. The second lemma
gives a sufficient condition for non-termination. It implies the first
condition, but it is not a sufficient and necessary condition.

4.1 A Termination Condition
Lemma 6. Given a recursive rule r and a devil’s rule d for r of the
form

d : OBud \RBud , C ^Bbi C0 ^OBud=OH0 ^RH0

Then the computation

(Hr ^ Cr) = S0
0 7!r T 0

0 7!d S0
1

or any of its prefixes does not end in a failed state, if and only if

C ^Bbi ^ C0 ^OBud=OH0

is consistent.

Proof. From Lemma 2 and the proof of Theorem 1 we can see that
the built-in constraints of the three states in the computation are

S0
0bi = (Cr)

T 0
0bi = ((B⇤bi) ^ Cr ^ (H⇤=Hr ^ C⇤))

S0
1bi = ((C0 ^OBud=OH0) ^
B⇤bi ^ Cr ^H⇤=Hr ^ C⇤ ^ (Bud=B⇤ud ^ C ^Bbi)),

where constraints in brackets are newly added in a state. We also
know that the tuples (Hr, Cr) and (H⇤, C⇤) and (H 0, C0) as well
as (Bud, Bbi, C) and (B⇤ud, B⇤bi, C⇤) are disjoint variants and
that the constraints (H⇤=Hr ^ C⇤) and (Bud=B⇤ud ^ C ^ Bbi)
are implied by the states S0

0bi and T 0
0bi, respectively.

According to the semantics of CHR, built-in constraints in a
computation are accumulated, i.e. added but never removed. To
prove the claim, it therefore suffices to consider the built-in con-
straints of the last state S0

1bi. We have to show that

C ^Bbi ^ C0 ^OBud=OH0 $
9x̄(C0 ^OBud=OH0 ^B⇤bi ^ Cr ^H⇤=Hr ^ C⇤ ^

Bud=B⇤ud ^ C ^Bbi),

where x̄ consist of all variables that do not occur in the left-hand
side of the logical equivalence. Since the left-hand side constraints
occur in the right hand side, we just have to show that the left-hand
side implies the right-hand side. As in the the proof of Theorem 1,
we can apply Lemma 1 to show that remaining constraints on the
right-hand side B⇤bi^Cr^H⇤=Hr^C⇤^Bud=B⇤ud are implied

by the left-hand side, since they are disjoint variants as given above.

Note that the lemma does not say that any computation with the
recursive rule alone will fail. But it will fail with a transition of the
devil’s rule.

Example 5. We continue with Example 4 and its correct devil’s
rule

even(Z))X=s(Y)^Y=s(Z)X 0=s(Y 0)^even(Z)=even(X 0).

The conjunction to check can be simplified into

X=s(Y) ^ Y=s(Z) ^ Z=s(Y 0) ^X 0=Z

and is clearly satisfiable. Thus non-termination is not ruled out.

Example 6. Consider the direct recursive rule and its devil’s rule

c(0) , c(s(X)).

c(s(X))) c(s(X))=c(0).

Since s(X)=0 is unsatisfiable, the recursive rule must always
terminate. Actually, the recursive goal c(s(X)) will delay.

4.2 A Non-Termination Condition
Lemma 7. Given a recursive rule r and a devil’s rule d for r of the
form

d : OBud \RBud , C ^Bbi C0 ^OBud=OH0 ^RH0

and let (H,C,Bbi) and (H 0, C0, B0
bi) be disjoint variants derived

from the recursive rule r. Then the maximally vicious computation

(S0
0 = (Hr^Cr)) S0

0 7!r T 0
0 . . . S

0
i 7!r T 0

i 7!d S0
i+1 . . . (i � 0)

is non-terminating, if

(NT) 9(C^Bbi)^8((C^Bbi) ! 9(C0^OBud=OH0 ^B0
bi)).

Proof. We prove by induction over the transitions analgous to
Theorem 1. We show that if a state in the computation is not failed
and condition NT holds, then the next state is not failed as well.
In the induction step we distinguish between applications of rule r
and rule d.

Base Case. For the base case, we consider the prefix of the compu-
tation

(Hr ^ Cr) = S0
0 7!r T 0

0 7!d S0
1.

Condition NT implies by the laws of first-order predicate logic

9(C ^Bbi ^ C0 ^OBud=OH0).

From Lemma 6 we know that this conjunction implies that the
prefix of the computation has no failed states.

Induction Step Case 1. The transition for rule r yields the condi-
tion

(i � 0) ^ NT ^ 9(S0
i) ^ (S0

i 7!r T 0
i) ! 9(T 0

ibi).

According to Lemma 2 and Theorem 1, this transition is of the form

((C0 ^OBud=OH0 ^H 0) ^G ^ (Bud=H ^ C ^Bbi)) 7!r

((B⇤bi ^B⇤ud) ^ (C0 ^OBud=OH0) ^
G ^ (Bud=H ^ C ^Bbi) ^ (H⇤=H 0 ^ C⇤)).

In the target state, the built-in constraints (C0 ^OBud=OH0)^
Gbi ^ (Bud=H ^ C ^ Bbi) are satisfiable, because they already
occured in the source state. The new constraints (H⇤=H 0 ^ C⇤)
are satisfiable, because they are implied by (C0) in the source state
(due to the applicability condition that must hold for the transition).
They have been added by the rule application together with B⇤bi.

The constraints (C^Bbi) of the source state must be satisfiable
and by condition NT we have that

8(C ^Bbi ! 9(C0 ^OBud=OH0 ^B0
bi)).

The tuples (H 0, C0, B0
bi) and (H⇤, C⇤, B⇤bi) are disjoint variants.

Therefore (C⇤ ^ B⇤bi) must be consistent as well, and thus the
built-in constraints of the target state are all satisfiable.

Induction Step Case 2. The transition for a devil’s rule d yields
the condition

(i � 0) ^NT ^ 9(T 0
i) ^ (T 0

i 7!d S0
i+1) ! 9(S0

i+1bi).

According to Lemma 2 and Theorem 1, this transition is of the form

(B⇤bi ^B⇤ud ^G ^H⇤=H ^ C⇤) 7!d

(OBud ^ (C0 ^OBud=OH0 ^RH0) ^
B⇤bi ^G ^H⇤=H ^ C⇤ ^ (Bud=B⇤ud ^ C ^Bbi)).

In the target state, the constraints (B⇤bi^B⇤ud^Gbi^H⇤=H^
C⇤) are satisfiable, because they occur in the source state. The new
constraints (Bud=B⇤ud ^ C ^ Bbi) are satisfiable, because they
are implied by (C⇤ ^ B⇤bi) in the source state (due to the applica-
bility condition that must hold for the transition). They have been
added by the rule application together with (C0^OBud=OH0). By
condition NT we have that

8(C ^Bbi ! 9(C0 ^OBud=OH0 ^B0
bi)).

Therefore (C0 ^OBud=OH0) must be consistent as well. Thus the
built-in constraints of the target state are all satisfiable.

If condition NT holds for a devil’s rule, its maximally vicious
computation is non-terminating. Thus there may be other non-
terminating computations for the recursive rule. Conversely, if the
maximally vicious computation terminates in a failed state, the
condition cannot hold. On the other hand, if the condition does not
hold, we cannot draw any conclusion about non-termination from
it. We rather have to look at the maximally vicious computation for
further insight about the termination behavior.

Example 7. Let odd and prime be built-in constraints. Consider the
following recursive rule and its devil’s rule

c(X) , odd(X) c(s(s(X))),

c(s(s(X)))) odd(X) (odd(X 0) ^ c(s(s(X)))=c(X 0)).

Condition NT amounts to

9odd(X) ^ 8(odd(X) ! (odd(X 0) ^ c(s(s(X)))=c(X 0))).

Since the successor of the successor of an odd number is always
odd, the condition holds. Actually, the recursive rule on its own is
non-terminating for odd numbers.

Now consider a variation of the above rule

c(X) , prime(X) c(s(s(X))).

Condition NT amounts to

9prime(X)^8(prime(X)!(prime(X 0)^c(s(s(X)))=c(X 0))).

Since the successor of the successor of a prime number may not
be prime, the condition does not hold. Thus the status of non-
termination is undecided. Actually, the recursive rule always termi-
nates after at most two recursive steps: one of every three sequential
odd numbers is a multiple of three, and hence not prime. Hence the
maximally vicious computation always ends in a failed state.

5. Examples - Putting It All Together
Devil’s Rule Simplification. In practice, we will simplify the built-
in constraints in the devil’s rules by replacing them with logically

equivalent ones. We do so taking into account that variables not
occurring in the head of a rule are implicitly existentially quantified
according to the CHR semantics. Moreover, if built-in constraints
of the body are implied by the guard, we can remove them if other
constraints in the body are not affected.

We can then distinguish two extreme cases:

1. If the built-in constraints in the devil’s rule are inconsistent,
we can replace the body of the rule by the built-in constraint
false . We have a case for Lemma 6. So the recursive rule is
unconditionally terminating if all its devil’s rules simplify in
this way.

2. If the simplification of a devil’s rule yields a satisfiable guard
and a body built-in constraint equivalent to true , then Lemma 7
may apply. Part of the condition NT of the lemma already holds
in that case. It remains to check if the body built-in constraint
of the recursive rule is implied in the context of the condition.
This trivially holds if there are no such body constraints.

5.1 Even Numbers
We continue with Example 5. Recall the correct rule for even and
its devil’s rule

even(X) , X=s(Y) Y=s(Z) ^ even(Z).

even(Z))X=s(Y)^Y=s(Z)X 0=s(Y 0)^even(Z)=even(X 0).
The devil’s rule can be simplified into even(Z)) Z=s(Y 0).

Lemma 6 does not apply. Lemma 7 yields the condition NT
(with the equality even(Z)=even(X 0) simplified away for con-
venience)

9(X=s(Y) ^ Y=s(Z)) ^
8((X=s(Y) ^ Y=s(Z)) ! 9(Z=s(Y 0) ^ Y 0=s(Z0))).

Since the predecessor of the predecessor of an even natural
number does not exist for the number 0, it is not always even. Thus
the condition does not hold. But it easy to see from the recursive
rule and its devil’s rule that the maximally vicious computation
does not terminate. Actually, the recursive rule on its own may not
terminate as we have shown in the introduction.

Termination. Next we consider two examples for the application
of Lemma 6 for termination. Consider an erroneous version of the
rule for even with a typo (highlighted by bold type font)

even(X) , X=s(Y) Y=s(X) ^ even(Z).

This leads to a devil’s rule with the unsatisfiable guard X=s(Y)^
Y=s(X). After rule simplification we arrive at

even(Z)) false false.

Since the body of the simplified devil’s rule is false , the recursive
rule will always terminate. It will actually lead to a failed state,
when it is applicable, since its guard and body built-in constraints
are in contradiction.

Now consider another typo and the resulting simplified devil’s
rule

even(X) , X=s(Y) Y=s(z) ^ even(z).

even(z)) false.
The recursive rule will thus always terminate, but not necessarily in
a failed state. Once the recursive rule is applied, it cannot be applied
again to the recursive goal even(z), since the argument z does not
satisfy the guard that demands a term of the form s(Y).

Non-termination. Now we look at examples for application of
Lemma 7 for non-termination. Consider the following rule with a
typo and its devil’s rule

even(X) , X=s(Y) Y=s(Z) ^ even(X).

even(X))X=s(Y)^Y=s(Z)X 0=s(Y 0)^even(X)=even(X 0).

After simplification we arrive at

even(X)) X=s(Y) ^ Y=s(Z) true.

The implication in condition NT corresponds to

8((X=s(Y) ^ Y=s(Z)) ! 9(X=s(Y 0) ^ Y 0=s(Z0))).

Actually, the recursive rule on its own is already always non-
terminating.

Now consider another erroneous rule and the resulting simpli-
fied devil’s rule

even(X) , X=s(Y) Y=s(z) ^ even(Y).

even(Y)) Y=s(z) true.

The implication in condition NT corresponds to

8((X=s(Y) ^ Y=s(z)) ! 9(Y=s(Y 0) ^ Y 0=s(z))).

The condition does not hold, since Y=s(z) and Y=s(Y 0) ^
Y 0=s(z) are in contradiction. So true in the body of a simpli-
fied devil’s rule does not necessarily mean non-termination, the
maximally vicious computation may end in a failed state. Actually,
here any computation where the recursive rule is applied will lead
to a failed state.

5.2 Minimum
We compute the minimum of a multiset of numbers ni, and a
non-strict total order over an infinite domain of numbers, given as
a computation of the query min(n1),min(n2), ...,min(nk) with
the recursive rule

min(N) ^min(M) , N M min(N).

The rule takes two min candidates and removes the one with the
larger value. It keeps going until only one, the smallest value,
remains as single min constraint.

There are two overlaps at the recursive constraint min in the
rule. The resulting devil’s rules and then their simplified versions
are

min(N)) N M N 0 M 0^
min(N)=min(N 0) ^min(M 0)

min(N)) N M N 0 M 0^
min(N)=min(M 0) ^min(N 0)

min(N)) N M 0 ^min(M 0)
min(N)) N 0 N ^min(N 0)

These are propagation rules that either add a smaller or larger
min constraint. According to Lemma 7, the condition NT amounts
to

9(N M) ^ 8((N M) ! 9(N M 0))
9(N M) ^ 8((N M) ! 9(N 0 N))

Since both conditions hold, all maximally vicious computations
are indeed non-terminating, no matter which of the two devil’s rules
are used. Actually, the recursive rule on its own does not terminate
if we keep adding min constraints. Otherwise, it terminates, since
every rule application removes one min constraint.

5.3 Exchange Sort
We can sort an array by keeping exchanging values at positions
that are in the wrong order. Given an array as a conjunction
of constraints representing array elements a(Index ,Value), i.e.
a(1, A1) ^ . . . ^ a(n,An), and a strict total order < over the inte-
gers, the following recursive rule sorts in this way

a(I, V) ^ a(J,W) , I>J ^ V <W a(I,W) ^ a(J, V).

In a sorted array, it holds for each pair a(I, V), a(J,W) where
I>J that V � W . The rule ensures that this indeed will hold for
every such pair by exchanging the values if necessary.

There are two full overlaps, the resulting devil’s rules and their
simplified versions are

a(I,W) ^ a(J, V)) I>J ^ V <W I 0>J 0 ^ V 0<W 0^
(a(I,W) ^ a(J, V))=(a(I 0, V 0) ^ a(J 0,W 0))

a(I,W) ^ a(J, V)) I>J ^ V <W I 0>J 0 ^ V 0<W 0^
(a(I,W) ^ a(J, V))=(a(J 0,W 0) ^ a(I 0, V 0))

a(I,W) ^ a(J, V)) I>J ^ V <W false

a(I,W) ^ a(J, V)) I>J ^ V <W false

To the devil’s rules of the full overlaps Lemma 6 applies. In-
deed, the recursive rule terminates for any two array constraints. It
cannot be applied a second time to the same pair of constraints.

There are four more partial overlaps between one array con-
straint from the head and one from the body of the recursive rule,
yielding four devil’s rules and their simplifications

a(I,W) \ a(J, V) , I>J ^ V <W
I 0>J 0 ^ V 0<W 0 ^ a(I,W)=a(I 0, V 0) ^ a(J 0,W 0)

a(I,W) \ a(J, V) , I>J ^ V <W
I 0>J 0 ^ V 0<W 0 ^ a(I,W)=a(J 0,W 0) ^ a(I 0, V 0)

a(J, V) \ a(I,W) , I>J ^ V <W
I 0>J 0 ^ V 0<W 0 ^ a(J, V)=a(I 0, V 0) ^ a(J 0,W 0)

a(J, V) \ a(I,W) , I>J ^ V <W
I 0>J 0 ^ V 0<W 0 ^ a(J, V)=a(J 0,W 0) ^ a(I 0, V 0)

a(I,W) \ a(J, V) , I>J ^ V <W
I>J 0 ^W<W 0 ^ a(J 0,W 0)

a(I,W) \ a(J, V) , I>J ^ V <W
I 0>I ^ V 0<W ^ a(I 0, V 0)

a(J, V) \ a(I,W) , I>J ^ V <W
J>J 0 ^ V <W 0 ^ a(J 0,W 0)

a(J, V) \ a(I,W) , I>J ^ V <W
I 0>J ^ V 0<V ^ a(I 0, V 0)

The condition NT of Lemma 7 is satisfied for these four devil’s
rules, for example consider

9(I>J ^ V <W) ^
8((I>J ^ V <W) ! 9(I>J 0 ^W<W 0)).

To cause non-termination, the devil’s rules replace an array
constraint by another one. For every pair of array elements that
has been ordered, this replacement results in an unordered pair.
Therefore the array sort rule may not terminate if the array is
updated during sorting.

We next consider an erroneous version of array sort, where the
guard condition I>J is missing, and its two full overlaps.

a(I, V) ^ a(J,W) , V <W a(I,W) ^ a(J, V)

a(I,W) ^ a(J, V)) V <W false

a(I,W) ^ a(J, V)) V <W true

The second full overlap now produces a different simplified
devil’s rule. It has the body true . Moreover, the recursive rule does
not have any built-in constraints in its body. Therefore Lemma 7
holds. Actually, the guard condition V <W applies to any pair
of array constraints with different values. So the rule will keep
exchanging values in such two array constraints forever.

6. Conclusions
In this paper we have introduced a novel approach to non-termination
analysis, exemplified for the programming language Constraint
Handling Rules (CHR). It is based on the notion of a devil’s advo-
cate that produces a malicious program that causes non-termination

of the given program, if it is possible at all. We have introduced
the devil’s advocate method using direct recursive simplifications
rules of CHR. From them, the devil’s advocate constructs so-called
devil’s rules in a simple manner. If a recursive rule and its devil’s
rules are applied alternatingly, the result is a maximally vicious
computation. It is either infinite or ends in a failed state, as we
have proven. The latter means that no infinite computation is pos-
sible with the recursive rule, independent of the program in which
it appears. Otherwise, every non-terminating computation of the
recursive rule in any program contains the maximally vicious com-
putation, as we have proven, too.

The resulting devil’s rules are often simple, e.g. non-recursive
for single-recursion, and thus can be more easily inspected and
analysed than their recursive counterparts. Also, the maximally
vicious computation can be performed as an instructive help for
the programmer during debugging, since it exhibits the essence of
non-termination.

The devil’s advocate approach can be characterized as follows:
It is concerned with universal (non-)termination, while most other
work deals with termination in the given context of a specific pro-
gram. In the latter, it is important to find out which non-terminating
computations are unreachable, and this is a necessary complication
that comes at a considerable cost. It leads to combinatorial explo-
sion and requires guessing of suitable abstractions. The search for
feasible execution paths that is typical for most research on non-
termination is a dynamic analysis technique, while the construction
of the devil’s rule is straightforward and a static analysis technique.

We have also introduced preliminary sufficient conditions for
termination and non-termination that are directly derived from the
devil’s rules. At the moment, this compares favorable with other ap-
proaches, where the search for suitable invariants and recurrences
involves indeterminism, heuristics and approximation techniques.
It should be noted that the conditions are quite similar. Currently
it is not clear if the simplicity is due to universal termination that
we are interested in or if it will vanish once our conditions become
more tight.

We think the main appeal of our approach lies in the particulary
simple construction of the malicious program, providing a finite
witness for (non-)termination. Indeed, as we have shown, the mali-
cious program can form an alternative basis for dynamic and static
termination analysis.

Last but not least, our approach works well in a concurrent dis-
tributed language setting. Universal termination is an important is-
sue there, since a malicious program produced by a devil’s advocate
could be introduced into the distributed environment to cause harm.
A concrete example would be denial-of-service attacks.

Future Work. We consider this paper as a starting point. Many di-
rections for future work are possible. First of all, we clearly should
extend the applicability of the devil’s rule construction to recursive
simpagation and propagation rules as well as to mutual recursion.
Secondly, we would like to improve the results on static analysis
with additional conditions for termination and non-termination. We
suspect there is a close relationship with existing approaches con-
cerning that aspects of our work. We also think that the presenta-
tion of the proofs could be made more accessible if an operational
semantics more adequate for this kind of analysis can be found.
Recent CHR semantics such as [3] could provide a starting point.

In the context of CHR, ranking functions have been used to
prove termination and complexity bounds for bounded goals [7, 8].
Do devil’s advocate rules respect such rankings? Can we derive
boundedness conditions from them? A classic analysis result for
CHR is a decidable, sufficient and necessary condition for conflu-
ence of terminating programs [1]. There are also conditions for con-
fluence of non-terminating programs. Do devil’s rules respect con-
fluence? We also think that the restriction to confluent programs

may provide for additional conditions concerning static analysis of
(non-)termination.

Our devil’s advocate method should be applied to other pro-
gramming languages and paradigms. Logic programming lan-
guages such as Prolog and concurrent constraint languages should
be especially suitable, since they are predecessors of CHR. In Pro-
log there exist successful tools for termination analysis, which
could provide an environment for fruitful comparisons with our
approach.

For non-declarative languages we are confident that the advan-
tages of our new technique carry over to this setting, where loops
dominate over recursion as a language construct. A concrete start-
ing point for this line of investigation might be to explore the rela-
tionship with the work [5], as mentioned in the introduction.

We can regard the devil’s rules as a finite, concise and compact
representation of queries of finite and infinite size. It still could be
worthwhile to derive (some of) these queries as counter-examples
from the malicious program. This could be useful for the user, but
also foster comparison with other approaches in the field. Similar-
ily, the given program context could be taken into account to see
if infinite computations according to the devil’s rule are possible at
all.

In the end, our devil’s advocate method, once fully understood
and explored, might work best when combined with existing ap-
proaches, hopefully combining their advantages and leveling out
their disadvantages.

Acknowledgments
We would like to thank the anonymous referees that provided us
with detailed comments and suggestions for improvements of this
paper.

References
[1] S. Abdennadher and T. Frühwirth. On completion of Constraint

Handling Rules. In M. J. Maher and J.-F. Puget, editors, CP ’98,
volume 1520 of LNCS, pages 25–39. Springer, Oct. 1998. ISBN 3-
540-65224-8.

[2] S. Abdennadher and T. Frühwirth. Operational equivalence of con-
straint handling rules. In 5th International Conference on Princi-
ples and Practice of Constraint Programming, CP99, LNCS 1713.
Springer, 1999.

[3] H. Betz, F. Raiser, and T. Frühwirth. A complete and terminating
execution model for Constraint Handling Rules. volume 10(4–6) of
TPLP, pages 597–610. Cambridge University Press, July 2010. .

[4] M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. Automated detec-
tion of non-termination and nullpointerexceptions for Java bytecode.
In Formal Verification of Object-Oriented Software, pages 123–141.
Springer, 2012.

[5] H.-Y. Chen, B. Cook, C. Fuhs, K. Nimkar, and P. OHearn. Proving
nontermination via safety. In TACAS 2014 - Tools and Algorithms for
the Construction and Analysis of Systems, pages 156–171. Springer,
2014.

[6] B. Cook, A. Podelski, and A. Rybalchenko. Proving program termi-
nation. Communications of the ACM, 54(5):88–98, 2011.

[7] T. Frühwirth. As time goes by II: More automatic complexity analysis
of concurrent rule programs. In A. D. Pierro and H. Wiklicky, editors,
QAPL ’01: Proc. First Intl. Workshop on Quantitative Aspects of
Programming Languages, volume 59(3) of ENTCS. Elsevier, 2002.

[8] T. Frühwirth. As time goes by: Automatic complexity analysis of
simplification rules. In D. Fensel, F. Giunchiglia, D. McGuinness,
and M.-A. Williams, editors, KR ’02: Proc. 8th Intl. Conf. Princ.
Knowledge Representation and Reasoning, pages 547–557. Morgan
Kaufmann, Apr. 2002.

[9] T. Frühwirth. Constraint Handling Rules. Cambridge Univer-
sity Press, 2009. ISBN 9780521877763. URL http://www.

constraint-handling-rules.org.
[10] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disprov-

ing termination of higher-order functions. Frontiers of Combining Sys-
tems, pages 216–231, 2005.

[11] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G.
Xu. Proving non-termination. ACM Sigplan Notices, 43(1):147–158,
2008.

[12] S. Liang and M. Kifer. A practical analysis of non-termination in large
logic programs. Theory and Practice of Logic Programming, 13(4-5):
705–719, 2013.

[13] É. Payet. Loop detection in term rewriting using the eliminating
unfoldings. Theoretical Computer Science, 403(2):307–327, 2008.

[14] E. Payet and F. Mesnard. Nontermination inference of logic pro-
grams. ACM Transactions on Programming Languages and Systems
(TOPLAS), 28(2):256–289, 2006.

[15] É. Payet and F. Mesnard. A non-termination criterion for binary con-
straint logic programs. Theory and Practice of Logic Programming, 9
(02):145–164, 2009.

[16] É. Payet, F. Mesnard, and F. Spoto. Non-termination analysis of Java
bytecode, CoRR abs/1401.5292, 2014.

[17] P. Pilozzi and D. De Schreye. Termination analysis of CHR revisited.
In Logic Programming, pages 501–515. Springer, 2008.

[18] F. Raiser, H. Betz, and T. Frühwirth. Equivalence of CHR states revis-
ited. In F. Raiser and J. Sneyers, editors, 6th International Workshop
on Constraint Handling Rules (CHR), pages 34–48, 2009.

[19] H. Velroyen and P. Rümmer. Non-termination checking for imperative
programs. In Tests and Proofs, pages 154–170. Springer, 2008.

[20] D. Voets and D. Schreye. A new approach to non-termination analysis
of logic programs. In Proceedings of the 25th International Confer-
ence on Logic Programming, pages 220–234. Springer-Verlag, 2009.

